How to cite this paper
Bakry, M., Mohammed, L., Dabour, N & Gad, M. (2024). Design and synthesis of novel N, N′-substituted benzamide derivatives as potential insecticidal agents against the white mango scale insect, Aulacaspis tubercularis (Hemiptera: Diaspididae).Current Chemistry Letters, 13(1), 173-186.
Refrences
(1) Nabil H. A., Shahein A. A., Hammad K. A. A., and Hassan A. S. (2012) Ecological studies of Aulacaspis tubercularis (Diaspididae: Hemiptera) and its natural enemies infesting mango trees in Sharkia Governorate, Egypt. Egypt. Acad. J. Biolog. Sci. 5 (3) 9-17.
(2) Bragard C., Baptista P., Chatzivassiliou E., Di Serio F., Gonthier P., and Macleod A. (2022) Pest categorisation of Aulacaspis tubercularis. EFSA Journal. 20 (5) 7307-7316.
(3) Bakry M. M. S. and El-Zoghby I. R. M. (2019) Effect of climatic weather factors, physical and chemical characteristics for mango leaves on the population density by Aulacaspis tubercularis (Newstead). Int. J. of Agric. Innovations and Res., 8 (1) 98-114.
(4) Nabil H. A., Shahein A. A., Hammad K. A. A., and Hassan A. S. (2012) Ecological studies of Aulacaspis tubercularis (Diaspididae: Hemiptera) and its natural enemies infesting mango trees in Sharkia Governorate, Egypt. Acad. J. Biolog., Sci. 5 (2) 9-17.
(5) Bakry M. M. S. and Abdel-Baky N. F. (2020) Examining the spatial distribution pattern and optimum sample size for monitoring the white mango scale insect, Aulacaspis tubercularis (Newstead) (Hemiptera: Diaspididae) on certain mango cultivars. International journal of Horticulture, Agriculture and Food science, 4 (3) 91-104.
(6) Utnicka J., Wójtowicz A. and Kula K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study Mikołaj Sadowskia. Curr. Chem. Lett., 12 (2023) 421–430.
(7) Kula K. and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett 10 (2021) 9–16.
(8) Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T. and Jasiński R. (2021) The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study Molecules. 26 (22): 6774.
(9) Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzinska K., Demchuk O. M., Gaurav G. K., Wróblewska A. and Jasinski (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules. 27 (23): 8409.
(10) Kula K., Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59(3), 138-144.
(11) Steelman C. D., Farlow J. E, breaud T. P. and schilling P. E. (1975) effects of growth regulators on psorophora columbiae (Dyar and Knab) and non-target aquatic insect species in rice fields. Mosq. News. 35 (1) 67-76.
(12) Bakry M. M. S. (2009) Studies on some scale insects and mealybugs infesting mango trees in Qena Governorate. M.Sc. Thesis, Fac. Agric. Minia Univ., 204 pp.
(13) Ables J., Jones, R. and Bee, M. J. (1977) Effect of diflubensuron on beneficial arthropodos associated with cotton. Southwest Entomol. 2, 66-72.
(14) Bakry M. M. S. and Mohamed L. H. Y. (2019) Effectiveness of insecticides, insect growth regulators, mineral and plant oils against the cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) infesting cotton plants. Acad. Res. J. Biotech. 7 (1) 1-5.
(15) Retnakaran A., Granett J. and Ennis, T. (1985) Insect Growth Regulators, In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (Eds. G.A. Kerkut and L.I. Gilbert,). Pergamon Press, Oxford. 12, 529.
(16) Abdelhamid A. A., Elsaghier A. M. M., Aref S. A., Gad M. A., Ahmed N. A., and Abdel-Raheem Sh.A.A. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
(17) Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett.10 (4) 393-412.
(18) Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports, 24 (2019) 394-401.
(19) Jasinski J. P., Akkurt M., Mohamed Sh. K., Gad M. A. and Albayati M. R. (2015) Crystal structure of N-(propan-2-yl-carbamothioyl)benzamide. Acta Cryst., 71 (1) 56-57.
(20) Abdelhamid A. A, Salama K. S. M., Elsayed A. M., Gad M. A., and El-Remaily M. A. A. A. (2022) Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, Spodoptera littoralis (Boisduval). ACS Omega, 7 (2022) 3990-4000.
(21) El-Gaby M. S. A., Ammar Y. A., Drar A. M., Gad, M. A. (2022) Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11 (4) 263-268.
(22) Mohanny K. M., Mohamed G. S., Bakry, M. M. S., Ali M. K. and Allam R. O. H. (2022) Toxicity of three insecticides and some alternatives against cottony cushion scale, Icerya purchasi (Maskell) under laboratory conditions. SVU-International Journal of Agricultural Sciences. 4 (3) 135-142.
(23) Bakhite E. A., Marae I. S., Gad, M. A., Mohamed Sh. K., Mague J. T. and Abuelhassan S. (2022) Pyridine Derivatives as Insecticides. Part 3. Synthesis, Crystal Structure, and Toxicological Evaluation of Some New Partially Hydrogenated Isoquinolines against Aphis gossypii (Glover, 1887). J. Agric. Food Chem. 70 (31) 9637–9644.
(24) Bakry M. M. S., Badawyb A. M. M. and Mohamed L. H. Y. (2023) Toxicity assessment of certain insecticides on the red soft scale insect, Pulvinaria tenuivalvata (Newstead) infesting sugarcane plants. Curr. Chem. Lett. 12 (2) 439-444.
(25) El-Gaby M. S. A., Bakry M. M. S., Hussein M. F.; Faraghally A.F., Khalil A. M., Gad M. A., Drar A. M. (2023) Insecticidal efficacy and structure activity relationship study of some synthesized cyanobenzylidene and bisbenzylidene derivatives against Aphis nerii. Curr. Chem. Lett. , 12 (3) 529-536.
(26): Gad M. A., Bakry M. M. S., Shehata E.A. and Dabour N.A. (2023) Insecticidal thioureas: preparation and Biochemical impacts of some novel thiobenzamide derivatives as potential eco-friendly insecticidal against the cotton leafworm, Spodoptera littoralis (Boisd.). Curr. Chem. Lett. , 12 (3) 529-536.
(27) El-Gaby, M. S. A., Hussein, M. F., Faraghally, A. F., Drar, A. M. and Gad, M. A. (2023) Insecticidal activity and structure activity relationship study of some synthesized hydrazone, dihydropyridine and 3-cyano-1, 4-dihydro-pyradazin-4-one derivatives against Aphis nerii. Curr. Chem. Lett. , 12 (3) 529-536.
(28) Gad M. A., Alqurashi E. A., Alsenani, N. I., Abd El Latif F. M., Aref S. A., Ahmed N.A., Abdelhamid A. A., El Saghier A. M. M. (2023) Insecticidal activity, and SAR studies of semicarbazide, thiosemicarbazide, urea and thiourea derivatives against Spodoptera littoralis (Boisd.). J. Umm Al-Qura Univ. Appll. Sci. Accepted Manuscript.
(29) Abbott W. S. A (1925) Method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18, 265-267.
(30) Finny D.J. (1952) Probit analysis: A statistical treatment of the sigmoid response curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(31) Abdel-Baky N. F., Al Rayes D. A., Al-Deghairi M. A., Ghonimy M. I., Alzohairy A. M., Al-Otaibi N. D. and Bakry M. M. S. (2020) Carbon dioxide-enriched atmosphere to control Oryzaaephilus Surinamensis L. on stored Saqie date fruits. Pak. J. Biol. Sci. 24, 688-698.
(32) Sharma R. C. and Parashar R. K. (1988) Synthesis and microbicidal activity of N-(2-substituted) phenyl ureas and their metal complexes. J. Inorg. Biochem. 32 (3) 163-169.
(2) Bragard C., Baptista P., Chatzivassiliou E., Di Serio F., Gonthier P., and Macleod A. (2022) Pest categorisation of Aulacaspis tubercularis. EFSA Journal. 20 (5) 7307-7316.
(3) Bakry M. M. S. and El-Zoghby I. R. M. (2019) Effect of climatic weather factors, physical and chemical characteristics for mango leaves on the population density by Aulacaspis tubercularis (Newstead). Int. J. of Agric. Innovations and Res., 8 (1) 98-114.
(4) Nabil H. A., Shahein A. A., Hammad K. A. A., and Hassan A. S. (2012) Ecological studies of Aulacaspis tubercularis (Diaspididae: Hemiptera) and its natural enemies infesting mango trees in Sharkia Governorate, Egypt. Acad. J. Biolog., Sci. 5 (2) 9-17.
(5) Bakry M. M. S. and Abdel-Baky N. F. (2020) Examining the spatial distribution pattern and optimum sample size for monitoring the white mango scale insect, Aulacaspis tubercularis (Newstead) (Hemiptera: Diaspididae) on certain mango cultivars. International journal of Horticulture, Agriculture and Food science, 4 (3) 91-104.
(6) Utnicka J., Wójtowicz A. and Kula K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study Mikołaj Sadowskia. Curr. Chem. Lett., 12 (2023) 421–430.
(7) Kula K. and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett 10 (2021) 9–16.
(8) Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T. and Jasiński R. (2021) The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study Molecules. 26 (22): 6774.
(9) Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzinska K., Demchuk O. M., Gaurav G. K., Wróblewska A. and Jasinski (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules. 27 (23): 8409.
(10) Kula K., Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59(3), 138-144.
(11) Steelman C. D., Farlow J. E, breaud T. P. and schilling P. E. (1975) effects of growth regulators on psorophora columbiae (Dyar and Knab) and non-target aquatic insect species in rice fields. Mosq. News. 35 (1) 67-76.
(12) Bakry M. M. S. (2009) Studies on some scale insects and mealybugs infesting mango trees in Qena Governorate. M.Sc. Thesis, Fac. Agric. Minia Univ., 204 pp.
(13) Ables J., Jones, R. and Bee, M. J. (1977) Effect of diflubensuron on beneficial arthropodos associated with cotton. Southwest Entomol. 2, 66-72.
(14) Bakry M. M. S. and Mohamed L. H. Y. (2019) Effectiveness of insecticides, insect growth regulators, mineral and plant oils against the cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) infesting cotton plants. Acad. Res. J. Biotech. 7 (1) 1-5.
(15) Retnakaran A., Granett J. and Ennis, T. (1985) Insect Growth Regulators, In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (Eds. G.A. Kerkut and L.I. Gilbert,). Pergamon Press, Oxford. 12, 529.
(16) Abdelhamid A. A., Elsaghier A. M. M., Aref S. A., Gad M. A., Ahmed N. A., and Abdel-Raheem Sh.A.A. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
(17) Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett.10 (4) 393-412.
(18) Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports, 24 (2019) 394-401.
(19) Jasinski J. P., Akkurt M., Mohamed Sh. K., Gad M. A. and Albayati M. R. (2015) Crystal structure of N-(propan-2-yl-carbamothioyl)benzamide. Acta Cryst., 71 (1) 56-57.
(20) Abdelhamid A. A, Salama K. S. M., Elsayed A. M., Gad M. A., and El-Remaily M. A. A. A. (2022) Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, Spodoptera littoralis (Boisduval). ACS Omega, 7 (2022) 3990-4000.
(21) El-Gaby M. S. A., Ammar Y. A., Drar A. M., Gad, M. A. (2022) Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11 (4) 263-268.
(22) Mohanny K. M., Mohamed G. S., Bakry, M. M. S., Ali M. K. and Allam R. O. H. (2022) Toxicity of three insecticides and some alternatives against cottony cushion scale, Icerya purchasi (Maskell) under laboratory conditions. SVU-International Journal of Agricultural Sciences. 4 (3) 135-142.
(23) Bakhite E. A., Marae I. S., Gad, M. A., Mohamed Sh. K., Mague J. T. and Abuelhassan S. (2022) Pyridine Derivatives as Insecticides. Part 3. Synthesis, Crystal Structure, and Toxicological Evaluation of Some New Partially Hydrogenated Isoquinolines against Aphis gossypii (Glover, 1887). J. Agric. Food Chem. 70 (31) 9637–9644.
(24) Bakry M. M. S., Badawyb A. M. M. and Mohamed L. H. Y. (2023) Toxicity assessment of certain insecticides on the red soft scale insect, Pulvinaria tenuivalvata (Newstead) infesting sugarcane plants. Curr. Chem. Lett. 12 (2) 439-444.
(25) El-Gaby M. S. A., Bakry M. M. S., Hussein M. F.; Faraghally A.F., Khalil A. M., Gad M. A., Drar A. M. (2023) Insecticidal efficacy and structure activity relationship study of some synthesized cyanobenzylidene and bisbenzylidene derivatives against Aphis nerii. Curr. Chem. Lett. , 12 (3) 529-536.
(26): Gad M. A., Bakry M. M. S., Shehata E.A. and Dabour N.A. (2023) Insecticidal thioureas: preparation and Biochemical impacts of some novel thiobenzamide derivatives as potential eco-friendly insecticidal against the cotton leafworm, Spodoptera littoralis (Boisd.). Curr. Chem. Lett. , 12 (3) 529-536.
(27) El-Gaby, M. S. A., Hussein, M. F., Faraghally, A. F., Drar, A. M. and Gad, M. A. (2023) Insecticidal activity and structure activity relationship study of some synthesized hydrazone, dihydropyridine and 3-cyano-1, 4-dihydro-pyradazin-4-one derivatives against Aphis nerii. Curr. Chem. Lett. , 12 (3) 529-536.
(28) Gad M. A., Alqurashi E. A., Alsenani, N. I., Abd El Latif F. M., Aref S. A., Ahmed N.A., Abdelhamid A. A., El Saghier A. M. M. (2023) Insecticidal activity, and SAR studies of semicarbazide, thiosemicarbazide, urea and thiourea derivatives against Spodoptera littoralis (Boisd.). J. Umm Al-Qura Univ. Appll. Sci. Accepted Manuscript.
(29) Abbott W. S. A (1925) Method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18, 265-267.
(30) Finny D.J. (1952) Probit analysis: A statistical treatment of the sigmoid response curve, 2nd Ed, Cambridge Univ. Press, Cambridge, U. K.
(31) Abdel-Baky N. F., Al Rayes D. A., Al-Deghairi M. A., Ghonimy M. I., Alzohairy A. M., Al-Otaibi N. D. and Bakry M. M. S. (2020) Carbon dioxide-enriched atmosphere to control Oryzaaephilus Surinamensis L. on stored Saqie date fruits. Pak. J. Biol. Sci. 24, 688-698.
(32) Sharma R. C. and Parashar R. K. (1988) Synthesis and microbicidal activity of N-(2-substituted) phenyl ureas and their metal complexes. J. Inorg. Biochem. 32 (3) 163-169.