How to cite this paper
Digambar, K., Varala, R & Patil, S. (2023). Zn(OAc)2•2H2O-catalyzed efficient synthesis of 5-Substituted 1H-tetrazoles.Current Chemistry Letters, 12(3), 509-518.
Refrences
1. John, S. E., Gulati S., and Shankaraiah, N. (2021) Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front., 8, 4237-4287. DOI: https://doi.org/10.1039/D0QO01480J.
2. Graebin C. S., Ribeiro F. V., Rogério K. R., and Kümmerle A. E. (2019) Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 16(6), 855-899. DOI: 10.2174/1570179416666190718153703.
3. Tryfon Z-T., Chandgude A. L., and Dömling, A. (2015) Multicomponent reactions, union of MCRs and beyond. Chem. Rec., 15(5), 981-996. DOI: http://dx.doi.org/10.1002/tcr.201500201.
4. Qadir, T., Andleeb Amin, Sharma, P. K., Jeelani, I., and Abe, H. (2022) A Review on medicinally important heterocyclic compounds. The Open Med. Chem. J. 16, 1-34. DOI: 10.2174/18741045-v16-e2202280.
5. Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., and Jonnalagadda, S. B. (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25(8), 1909. DOI: 10.3390/molecules25081909.
6. Taylor, A. P., Robinson, R. P., Fobian, Y. M., Blakemore, D. C., Jones, L. H., and Fadeyi, O. (2016) Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 14, 6611-6637. DOI: https://doi.org/10.1039/C6OB00936K.
7. Sabir, S., Alhazza, M. I., and Ibrahim, A. A. (2015) A review on heterocyclic moieties and their applications. Catal. Sustain. Energy 2, 99-115. DOI 10.1515/cse-2015-0009.
8. Varala, R. (2016) Scope of selective heterocycles from organic and pharmaceutical perspective. London, United Kingdom, IntechOpen (Ed.). DOI: 10.5772/60890.
9. Dhiman, N., Kaur, K., and Jaitak, V. (2020) Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem. 28(15), 115599. DOI: https://doi.org/10.1016/j.bmc.2020.115599.
10. Popova, E. A., Protas, A. V., and Trifonov, R. E. (2017) Tetrazole derivatives as promising anticancer agents. Ant-Cancer Agents Med. Chem. 17(14), 1856-1868. DOI: 10.2174/1871520617666170327143148.
11. Feinn, L., Dudley, J., Coca, A., and Roberts, E. L. (2017) Antimicrobial evaluation of 5-substituted aryl 1H-tetrazoles. Med. Chem. 13(4), 359-364. DOI: 10.2174/1573406412666161220150028.
12. Popova, E. A., Trifonov, R. E., and Ostrovskii, V. A. (2019) Tetrazoles for biomedicine. Russian Chem. Rev. 88(6), 644-676. DOI: https://doi.org/10.1070/RCR4864.
13. Zou, Y., Liu, L., Liu, J., and Liu, G. (2020) Bioisosteres in drug discovery: focus on tetrazole. Future Med. Chem. 12(2), 91-93. DOI: https://doi.org/10.4155/fmc-2019-0288.
14. Roh, J., Vávrová, K., and Hrabálek, A. (2012) Synthesis and functionalization of 5-Substituted tetrazoles. Eur. J. Org. Chem. 31, 6101 and references therein. DOI: https://doi.org/10.1002/ejoc.201200469.
15. Ostrovskii, V. A., Trifonov, R. E., and Popova, E. A. (2012) Medicinal chemistry of tetrazoles Russian Chem. Bull., 61(4), 768-780. DOI: https://doi.org/10.1007/s11172-012-0108-4.
16. Constantinos G. N., Ting Z., and Dömling, A. (2019) Tetrazoles via Multicomponent Reactions Chem. Rev. 119(3), 1970-2042. DOI: 10.1021/acs.chemrev.8b00564.
17. Sarvary, A., and Maleki, A. (2015) A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers. 19, 189-212. DOI: https://doi.org/10.1007/s11030-014-9553-3.
18. Vishwakarma, R., Gadipelly, C., and Mannepalli, L. K. (2022) Advances in tetrazole synthesis-An overview. ChemistrySelect 7(29), e202200706. DOI: https://doi.org/10.1002/slct.202200706.
19. Varala, R., and Hari Babu, B. (2018) A click chemistry approach to tetrazoles: Recent advances. Molecular Docking (InTech). DOI: 10.5772/intechopen.75720.
20. Swami, S., Sahu, S. N., and Shrivastava, R. (2021) Nanomaterial catalyzed green synthesis of tetrazoles and its derivatives: a review on recent advancements. RSC Adv., 11, 39058-39086. DOI: https://doi.org/10.1039/D1RA05955F.
21. Mittal, R., Awasthi, S. K. (2019) Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013-2018). Synthesis 51, 3765-3783. DOI: 10.1055/s-0037-1611863.
22. (a) Demko, Z. P., and Sharpless, K. B. (2001) Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J. Org. Chem. 66, 7945-7950. DOI: 10.1021/jo010635w (b) Himo, F., Demko, Z. P., Noodleman, L., and Sharpless, K. B. (2002) Mechanisms of tetrazole formation by addition of azide to nitriles. J. Am. Chem. Soc. 124, 12210-12216. DOI: https://doi.org/10.1021/ja0206644; (c) Himo, F., Demko, Z. P., Noodleman, L., and Sharpless, K. B. (2003)Why is tetrazole formation by addition of azide to organic nitriles catalyzed by zinc(II) salts? J. Am. Chem. Soc. 125, 9983-9987. DOI: https://doi.org/10.1021/ja030204q.
23. Yuan, Z., Lee, J. C. H., Reese, M. R., Boscoe, B. P., Humphrey, J. M., and Helal, C. J. (2020) 5-Aryltetrazoles from direct C-H arylation with aryl bromides. J. Org. Chem. 85(8), 5718-5723. DOI: https://doi.org/10.1021/acs.joc.0c00085.
24. Vignesh, A., Bhuvanesh, N. S. P., and Dharmaraj, N. (2017) Conversion of arylboronic acids to tetrazoles catalyzed by ONO Pincer-type palladium complex. J. Org. Chem., 82, 887-892. DOI: https://doi.org/10.1021/acs.joc.6b02277.
25. Ishihara, K., Shioiri, T., and Matusugi, M. (2020) An expeditious approach to tetrazoles from amides utilizing phosphorazidates. Org. Lett., 22, 6244-6247. DOI: https://doi.org/10.1021/acs.orglett.0c01890.
26. Sajjadi, M., Nasrollahzadeh, M., Ghafuri, H., Baran, T., Orooji, Y., Baran, N. Y., and Shokouhimehr M. (2022) Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int. J. Biol. Macromol. 209(Pt A):1573-1585. DOI: 10.1016/j.ijbiomac.2022.04.075.
27. Khalifeh, R., Rastegar, N., and Khalili, D. (2020) Highly active and reusable Cu/C catalyst for synthesis of 5-substituted 1H-tetrazoles starting from aromatic aldehydes. Acta Chim Slov. 67(4), 1044-1052.
28. Akbarzadeh, P., Koukabi, N., and Kolvari, E. (2020) Anchoring of triethanolamine-Cu(II) complex on magnetic carbon nanotube as a promising recyclable catalyst for the synthesis of 5-substituted 1H-tetrazoles from aldehydes. Mol Divers. 24(2), 319-333. DOI: 10.1007/s11030-019-09951-6.
29. Wang, H., Wang, Y., Han, Y., Zhao, W., and Wang, X. (2020) Humic acid as an efficient and reusable catalyst for one pot three-component green synthesis of 5-substituted 1H-tetrazoles in water. RSC Adv. 10(2), 784-789. DOI: 10.1039/c9ra08523h.
30. Sardarian, A. R., Eslahi, H., and Esmaeilpour, M. (2018) Copper(II) complex supported on Fe3O4@SiO2 coated by polyvinyl alcohol as reusable nanocatalyst in N-arylation of amines and N(H)-heterocycles and green synthesis of 1H-tetrazoles. ChemistrySelect 3, 1499-1511. DOI: https://doi.org/10.1002/slct.201702452.
31. Tao, C., Wang, B., Sun, L., Yi, J., Shi, D., Wang, J., and Liu, W. (2017) J. Chem. Res. 41, 25-29. DOI: https://doi.org/10.3184/174751917X1481542721924.
32. Behrouz, S. (2017) Highly efficient three-component synthesis of 5-substituted-1H-tetrazoles from aldehydes, hydroxylamine, and tetrabutylammonium azide using doped nano-sized copper(I) oxide (Cu2O) on melamine-formaldehyde resin. J. Saudi Chem. Soc., 21(2), 220-228. DOI: https://doi.org/10.1016/j.jscs.2016.08.003.
33. Guggilapu, S. D., Prajapti, S. K., Nagarsenkar, A., Gupta, K. K., and Babu, B. N. (2016) Indium(III) Chloride Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles from Oximes and Sodium Azide. Synlett, 27, 1241-1244. DOI: 10.1055/s-0035-1561559.
34. Ishihara, K., Kawashima, M., Matsumoto, T., Shiori, T., and Matsugi, M. (2016) Synthesis of 5-substituted 1H-tetrazoles from aldoximes using diphenyl phosphorazidate. Synlett, 27(15), 2225-2228. DOI: 10.1055/s-0035-1561668.
35. Patil, U. B., Kumthekar, K. R., and Nagarkar, J. M. (2012) A novel method for the synthesis of 5-substituted 1H-tetrazole from oxime and sodium azide. Tetrahedron Lett. 53(29), 3706-3709. DOI: https://doi.org/10.1016/j.tetlet.2012.04.093.
36. Enthaler, S., and Wu, X-F. (2015) Zinc catalysis: Applications in organic synthesis; Wiley. DOI: 10.1002/9783527675944.
37. Lang, L., Li, B., Liu, W., Jiang, L., Xu, Z., and Yin, G. (2010) Mesoporous ZnS nanospheres: a high activity heterogeneous catalyst for synthesis of 5-substituted 1H-tetrazoles from nitriles and sodium azide. Chem. Commun., 46, 448-450. DOI: https://doi.org/10.1039/B912284B.
38. Kantam, M. L., Balasubrahmanyam, V., and Shiva Kumar, K. B. (2006) Zinc hydroxyapatite-catalyzed efficient synthesis of 5‐substituted 1H‐tetrazoles. Synth. Commun. 36(12), 1809-1814. DOI: https://doi.org/10.1080/00397910600619630.
39. Kantam, M. L., Shiva Kumar, K. B., and Sridhar, C. (2005) Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Adv. Synth. Catal. 347(9), 1212-1214. DOI: https://doi.org/10.1002/adsc.200505011.
40. Clarina, T., and Rama, V. (2018) [3+2] Cycloaddition promoted by zinc oxide nanoparticles anchored on reduced graphene oxide using green solvent. Synth. Commun., 48(2), 175-187. DOI: 10.1080/00397911.2017.1393086.
41. Ahn, C., Campbell, R. F., and Feldman, K. S. (1997) Zinc acetate as a catalyst for di- and triimide formation 1,8-naphthalic anhydride and aromatic polyamides. Bull. Korean Chem. Soc. 18(4), 441-442.
42. Arigala, U. R. S., Matcha, C., and Yoon, K. R. (2012) Zn(OAc)2•2H2O-catalyzed synthesis of α-aminophosphonates under neat reaction. Heteroatom Chem., 23(2), 160-165. DOI: https://doi.org/10.1002/hc.20765.
43. Babu, H. B., Varala, R., and Alam, M. M. (2022) Zn(OAc)2⋅2H2O-Catalyzed Betti base synthesis under solvent-free conditions. Lett. Org. Chem. 19(1), 14-18. DOI: 10.2174/1570178618666210616155257.
44. Reddy, V. V. R., Saritha B., Ramu, R., Varala R., and Jayashree, A. (2014) Zn(OAc)2⋅2H2O-catalyzed one-pot efficient synthesis of aminonitriles. Asian. J. Chem. 26, 7439-7442.
45. Ramu, E., Varala, R., Sreelatha, N., and Adapa, S. R. (2007) Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett. 48(40), 7184-7190. DOI: 10.1016/j.tetlet.2007.07.196.
46. Patil, S. G., Varala, R., and Kokane, B. D. (2022) Zn(OAc)2•2H2O: An efficient catalyst for the one-pot synthesis of 2-substituted benzothiazoles. Org. Commun. 15(4), 378-385; DOI: http://doi.org/10.25135/acg.oc.140.2210.2618.
47. Qin, Y., Zhou, D., and Li, M. (2012) Zinc acetate as a catalyst for the hydroacylation reaction of azodicarboxylates with aldehydes. Lett. Org. Chem. 9(4), 267-272. DOI: 10.2174/157017812800233741.
48. Reddy, M. M. B., Nizam, A., and Pasha, M. A. (2011) Zn(OAc)2·2H2O‐Catalyzed, simple, and clean procedure for the synthesis of 2‐substituted benzoxazoles using a grindstone method. Synth. Commun. 41(12), 1838-1842. DOI: http://dx.doi.org/10.1080/00397911.2010.493260.
49. Nie, Y., Zhi, X., Du, H., and Yang, J. (2018) Zn(OAc)2-Catalyzing ring-opening polymerization of N-carboxyanhydrides for the synthesis of well-defined polypeptides. Molecules 23(4), 760. DOI: 10.3390/molecules23040760.
50. Bonkuri, P., and Jeripothula, M. (2018) Zinc(II)acetate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Pharm. Res., 10(5), 132-136.
51. Das, S., Addis, D., Zhou, S., Junge, K., and Beller, M. (2010) Zinc-Catalyzed reduction of amides: Unprecedented selectivity and functional group tolerance. J. Am. Chem. Soc., 132(6), 1770-1771. DOI: https://doi.org/10.1021/ja910083q.
52. Węglarz, I., Szewczyk, M., and Mlynarski, J. (2020) Zinc acetate catalyzed enantioselective reductive Aldol reaction of ketones. Adv. Synth. Catal. 2020, 362(7), 1532-1536. DOI: https://doi.org/10.1002/adsc.201901457.
53. Gowda, R. R., and Chakraborty, D. (2010) Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J. Mol. Catal. A Chem., 333(1-2), 167-172. DOI: https://doi.org/10.1016/j.molcata.2010.10.013.
54. Bonkuri, P., and Jeripothula, M. (2020) Zinc acetate catalyzed Mannich reaction: An efficient procedure for the synthesis of β-amino carbonyl compounds. J. Emerg. Technol. Innov. Res. 7(1), 524-531.
55. Chinta, B., Satyadev, T. N. V. S. S., and Adilakshmi, G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted Imidazoles. Curr. Chem. Lett. 12, 175-184. DOI: 10.5267/j.ccl.2022.8.007.
56. Bandaru, S. K., and Risi, M. C. (2022) Zn(OAc)2.2H2O-Catalyzed C3-alkylation and O-alkylation of 4-hydroxycoumarin derivatives: 10.55434/CBI.2022.20102. Caribbean J. Sci. Tech., 10(2), 10-16. DOI: https://doi.org/10.55434/CBI.2022.20102.
57. Ali, M. S., Ramesh, P. I., Ghosh, S., and Tatina, M. B. (2022) Zinc Acetate catalyzed stereoselective 1,2-trans-glycosylation using glycosyl chlorides. SynOpen 6, 219-226. DOI: 10.1055/a-1941-3801.
58. Nale, D. B., and Bhanage, B. M. (2015) N-Substituted formamides as C1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts. Synlett 26(20), 2835-2842. DOI: 10.1055/s-0035-1560319.
59. Rahimi, M. J., Demchuk, O. M., Wilczewska, A. Z., and Jasiński, R. (2018) Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst, Ultrason. Sonochem. 43, 262-271; DOI: https://doi.org/10.1016/j.ultsonch.2017.12.047
60. Jasinski, R. (2015) Nitroacetylene as dipolarophile in [2+3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh. Chem. 146, 591-599. DOI: 10.1007/s00706-014-1389-0.
61. Jasinski, R. (2018) Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chem. 1125, 77. DOI: https://doi.org/10.1016/j.comptc.2018.01.009.
62. Jasinski, R. (2015) In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv., 5, 101045. DOI: 10.1039/c5ra20747a.
63. Jasinski, R. (2020) A new insight on the molecular mechanism of the reaction between (Z)-C,N-diphenylnitrone and 1,2-bismethylene-3,3,4,4,5,5-hexamethylcyclopentane. J. Mol. Graph. Model. 94, 107461. DOI: https://doi.org/10.1016/j.jmgm.2019.107461.
64. Enthaler, S., Weidauer, M., and Schröder, F. (2012) Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles. Tetrahedron Lett. 53(7), 882-885. DOI:10.1016/j.tetlet.2011.12.036.
65. Totawar, P. R., Varala, R., Kotra, V., and Pulle, J. S. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities. Curr. Chem. Lett., 12, 249-256; DOI: 10.5267/j.ccl.2023.1.004.
66. Alanazi, N. M. M., Althobaiti, I. O., El-Ossaily, Y. A., Arafa, W. A. A., El-Sayed, M. Y., Altaleb, H. A., Ahmed, H. Y., and Tolba, M. S. (2023) Green synthesis of some tetrahydroquinoline derivatives and evaluation as anticancer agents. Arab. J. Chem. 16(3), 104543. DOI: https://doi.org/10.1016/j.arabjc.2023.104543.
67. Hamed, M. M., Sayed, M., Abdel-Mohsen, S. A., Saddik, A. A., Ibrahim, O. A., El-Dean, A. M. K., and Tolba, M. S. (2023) Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents. J. Mol. Struct. 1273, 134371. DOI: https://doi.org/10.1016/j.molstruc.2022.134371.
68. Abozeed, A., Tolba, M. S., Sayed, M., Al-Hossainy, and A. F., Younis, O. (2023) TD-DFT calculations and optical properties of a luminescent thiazolopyrimidine compound with different emission colors and uncommon blue shift upon aggregation. J. Appl. Phys. 133, 033101. DOI: https://doi.org/10.1063/5.0128280.
69. Almutlaq, N., Elshanawany, M. M., Sayed, M., Younis, O., Ahmed, M., Wachtveitl, J., Braun, M., Tolba, M. S., Al-Hossainy, A. F., and Abozeed, A. A. (2023) Synthesis, structural, TD-DFT, and optical characteristics of indole derivatives. Curr. Appl. Phys. 45, 86-98. DOI: https://doi.org/10.1016/j.cap.2022.11.004.
70. Abdel-Raheem, Sh. A. A., El-Dean, K. A. M., Abd ul-Malik M. A., Marae I. S., Bakhite E. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., Tolba M. S., Sayed A. S. A., and Abd-Ella A. A. (2022) Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev. Roum. Chem., 67 (4-5), 305-309. DOI: 10.33224/rrch.2022.67.4-5.09.
71. Elhady, O. M., Mansour, E. S., Elwassimy, M. M., Zawam, S. A., Drar, A. M., and Abdel-Raheem, Sh. A. A. Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents (2022) Curr. Chem. Lett., 11, 285-290. DOI: 10.5267/j.ccl.2022.3.006.
72. Fouada, M. R., Shamsanb, A. Q. S., and Abdel-Raheem, S. A. A. (2023) Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques. Curr. Chem. Lett., 12, 185-192. DOI: 10.5267/j.ccl.2022.8.006.