How to cite this paper
Kale, S & Surve, S. (2021). One-pot multicomponent synthesis of highly substituted pyridines using hydrotalcite as a solid base and reusable catalyst.Current Chemistry Letters, 10(3), 169-174.
Refrences
1. Ugi, I., Dombling, A. and Werner, B. (2000) New chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry. J. Heterocyclic Chem., 37, 647.
2. Bienayme, H., Hulme, C., Oddon, G. and Schmitt, P. (2000) Maximizing synthetic efficiency: multi-component transformations lead the way Chem. Eur. J. 6, 3221–3329.
3. Dömling, A. (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89.
4. Ramón, D. J. and Yus, M. (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier Angew. Chem., Int. Ed., 44, 1602–1634.
5. Perrier, V., Wallace, A. C., Kaneko, K., Safar, J., Prusiner, S. B. and Cohen, F. E. (2000) Mimicking dominant negative inhibition of prion replication through structure-based drug design Proc. Natl. Acad. Sci. U.S.A., 97, 6073–6078.
6. Reddy, T. R. K., Mutter, R., Heal, W., Guo, K., Gillet, V. J., Pratt, S. and Chen, B. (2006) Library Design, Synthesis, and Screening: Pyridine Dicarbonitriles as Potential Prion Disease Therapeutics J. Med. Chem., 46, 607–615.
7. May, B. C. H., Zorn, J. A., Witkop, J., Sherrill, J., Wallace, A. C., Legname, G., Prusiner, S. B. and Cohen, F. E. (2007) Structure−Activity Relationship Study of Prion Inhibition by 2-Aminopyridine-3,5-dicarbonitrile-Based Compounds: Parallel Synthesis, Bioactivity, and in Vitro Pharmacokinetics J. Med. Chem., 50, 65–73.
8. Cocco, M. T., Congiu, C., Lilliu, V. and Onnis, V. (2005) Synthesis and antiproliferative activity of 2,6-dibenzylamino-3,5-dicyanopyridines on human cancer cell lines Eur. J. Med. Chem., 40, 1365-1372.
9. Fletcher, M. D., Hurst, T. E., Miles, T. J. and Moody, C. J. (2006) Synthesis of highly-functionalized pyridines via hetero-Diels–Alder methodology: reaction of 3-siloxy-1-aza-1,3-butadienes with electron deficient acetylenes. Tetrahedron, 62, 5454-5463.
10. Van Aken, K. J., Lux, G. M., Deroover, G. G., Meerpoel, L. and Hoornaert, G. J. (1994) The Synthesis of 3-Functionalized 5-chloro-6-methyl-2H-1,4-oxazin-2-ones and of pyridines from cycloaddition-elimination reactions with substituted acetylenic compounds. Tetrahedron, 50, 5211-5224.
11. Winter, A. and Risch, N. (2003) Cross Mannich Reaction of Aldehydes; Efficient Synthesis of Substituted Pyridines. Synthesis, 2667.
12. Thomas, A. D. and Asokan, C. V. (2002) Vilsmeier–Haack reactions of α-hydroxyketenedithioacetals: a facile synthesis of substituted pyridines. Tetrahedron Lett., 43, 2273.
13. Vijn, R. J., Arts, H. J., Green, R. and Castelijns, A. M. (1994) Synthesis of alkyl-and aryl-substituted pyridines from (α, β-unsaturated) imines or oximes and carbonyl compounds. Synthesis, 573.
14. Bhuiyan, M. M. H., Matin, M. M., Kabir, E. and Alam, M. (2013) Multicomponent reactions: Synthesis and characterization of pyrimido[4,5-D]pyrimidine derivatives. Chittagong Univ. J. Sci., 36, 28-36.
15. Evdokimov, N. M., Kireev, A. S., Yakovenko, A. A., Antipin, M. Y., Magedov, I. V. and Kornienko, A. (2007) One-step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols. J. Org. Chem., 72, 3443–3453.
16. Evdokimov, N. M., Magedov, I. V., Kireev, A. S. and Konienko, A. (2006) One-Step, Three-Component Synthesis of Pyridines and 1,4-Dihydropyridines with Manifold Medicinal Utility. Org. Lett., 8, 899–902.
17. H. Hiddesh (1995) Heterogeneous Basic catalyst Chem. Rev. 95, 537-550
18. Y. Lunxiang and J. Liebscer (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133-173.
19. Kale S. R., Kahandal S. S., Disale S. and Jayaram R. V. (2012) Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water. Current Chemistry Letter, 47-58.
20. Kale S. R., Kahandal S. S., Gawande M. and Jayaram R.V. (2013) Magnetically recyclable-Fe2O3/HAP nanoparticles for cycloaddition reaction of alkyne, halide and azide in aqueous medium. RSC Advances, 13 (3) 8184-8192.
21. Parghi K., Kale S. R., Kahandal S. S., Gawande M. and Jayaram R.V. (2013) Sequential synthesis of b-amino alcohols using a CeO2–ZrO2 bifunctional catalyst system. Catalysis Science and Technology, 13, 1308-1313.
22. Kale S. R., Kahandal S. S., Burange A., Gawande M. and Jayaram R. V. (2013) A benign synthesis of 2-amino-4H-chromene in aqueous medium using hydrotalcite (HT) as a heterogeneous base catalyst. Catalysis Science and Technology, 13, 2050-2056.
23. Kahandal S. S., Kale S. R., Gawande M. and Jayaram R. V. (2014) A mild route for one-pot synthesis of 5,6-unsubstituted 1,4-dihydropyridines catalyzed by Sulphated mixed metal oxides. Catalysis Science and Technology, 4, 672-680.
24. Dong H., Zhong Y., Shen X., Yang J and Fang D. (2012) Synthesis of 2-amino-4-phenyl-6-(phenylsulfanyl)-3,5-dicyanopyridines by tandem reaction. Res Chem Intermed, 40 (2) 587-594.
2. Bienayme, H., Hulme, C., Oddon, G. and Schmitt, P. (2000) Maximizing synthetic efficiency: multi-component transformations lead the way Chem. Eur. J. 6, 3221–3329.
3. Dömling, A. (2006) Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89.
4. Ramón, D. J. and Yus, M. (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier Angew. Chem., Int. Ed., 44, 1602–1634.
5. Perrier, V., Wallace, A. C., Kaneko, K., Safar, J., Prusiner, S. B. and Cohen, F. E. (2000) Mimicking dominant negative inhibition of prion replication through structure-based drug design Proc. Natl. Acad. Sci. U.S.A., 97, 6073–6078.
6. Reddy, T. R. K., Mutter, R., Heal, W., Guo, K., Gillet, V. J., Pratt, S. and Chen, B. (2006) Library Design, Synthesis, and Screening: Pyridine Dicarbonitriles as Potential Prion Disease Therapeutics J. Med. Chem., 46, 607–615.
7. May, B. C. H., Zorn, J. A., Witkop, J., Sherrill, J., Wallace, A. C., Legname, G., Prusiner, S. B. and Cohen, F. E. (2007) Structure−Activity Relationship Study of Prion Inhibition by 2-Aminopyridine-3,5-dicarbonitrile-Based Compounds: Parallel Synthesis, Bioactivity, and in Vitro Pharmacokinetics J. Med. Chem., 50, 65–73.
8. Cocco, M. T., Congiu, C., Lilliu, V. and Onnis, V. (2005) Synthesis and antiproliferative activity of 2,6-dibenzylamino-3,5-dicyanopyridines on human cancer cell lines Eur. J. Med. Chem., 40, 1365-1372.
9. Fletcher, M. D., Hurst, T. E., Miles, T. J. and Moody, C. J. (2006) Synthesis of highly-functionalized pyridines via hetero-Diels–Alder methodology: reaction of 3-siloxy-1-aza-1,3-butadienes with electron deficient acetylenes. Tetrahedron, 62, 5454-5463.
10. Van Aken, K. J., Lux, G. M., Deroover, G. G., Meerpoel, L. and Hoornaert, G. J. (1994) The Synthesis of 3-Functionalized 5-chloro-6-methyl-2H-1,4-oxazin-2-ones and of pyridines from cycloaddition-elimination reactions with substituted acetylenic compounds. Tetrahedron, 50, 5211-5224.
11. Winter, A. and Risch, N. (2003) Cross Mannich Reaction of Aldehydes; Efficient Synthesis of Substituted Pyridines. Synthesis, 2667.
12. Thomas, A. D. and Asokan, C. V. (2002) Vilsmeier–Haack reactions of α-hydroxyketenedithioacetals: a facile synthesis of substituted pyridines. Tetrahedron Lett., 43, 2273.
13. Vijn, R. J., Arts, H. J., Green, R. and Castelijns, A. M. (1994) Synthesis of alkyl-and aryl-substituted pyridines from (α, β-unsaturated) imines or oximes and carbonyl compounds. Synthesis, 573.
14. Bhuiyan, M. M. H., Matin, M. M., Kabir, E. and Alam, M. (2013) Multicomponent reactions: Synthesis and characterization of pyrimido[4,5-D]pyrimidine derivatives. Chittagong Univ. J. Sci., 36, 28-36.
15. Evdokimov, N. M., Kireev, A. S., Yakovenko, A. A., Antipin, M. Y., Magedov, I. V. and Kornienko, A. (2007) One-step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols. J. Org. Chem., 72, 3443–3453.
16. Evdokimov, N. M., Magedov, I. V., Kireev, A. S. and Konienko, A. (2006) One-Step, Three-Component Synthesis of Pyridines and 1,4-Dihydropyridines with Manifold Medicinal Utility. Org. Lett., 8, 899–902.
17. H. Hiddesh (1995) Heterogeneous Basic catalyst Chem. Rev. 95, 537-550
18. Y. Lunxiang and J. Liebscer (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133-173.
19. Kale S. R., Kahandal S. S., Disale S. and Jayaram R. V. (2012) Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water. Current Chemistry Letter, 47-58.
20. Kale S. R., Kahandal S. S., Gawande M. and Jayaram R.V. (2013) Magnetically recyclable-Fe2O3/HAP nanoparticles for cycloaddition reaction of alkyne, halide and azide in aqueous medium. RSC Advances, 13 (3) 8184-8192.
21. Parghi K., Kale S. R., Kahandal S. S., Gawande M. and Jayaram R.V. (2013) Sequential synthesis of b-amino alcohols using a CeO2–ZrO2 bifunctional catalyst system. Catalysis Science and Technology, 13, 1308-1313.
22. Kale S. R., Kahandal S. S., Burange A., Gawande M. and Jayaram R. V. (2013) A benign synthesis of 2-amino-4H-chromene in aqueous medium using hydrotalcite (HT) as a heterogeneous base catalyst. Catalysis Science and Technology, 13, 2050-2056.
23. Kahandal S. S., Kale S. R., Gawande M. and Jayaram R. V. (2014) A mild route for one-pot synthesis of 5,6-unsubstituted 1,4-dihydropyridines catalyzed by Sulphated mixed metal oxides. Catalysis Science and Technology, 4, 672-680.
24. Dong H., Zhong Y., Shen X., Yang J and Fang D. (2012) Synthesis of 2-amino-4-phenyl-6-(phenylsulfanyl)-3,5-dicyanopyridines by tandem reaction. Res Chem Intermed, 40 (2) 587-594.