How to cite this paper
Totawar, P., Varala, R., Kotra, V & Pulle, J. (2023). Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities.Current Chemistry Letters, 12(2), 249-256.
Refrences
1. Brenno A. D. N., Rafael O. R., and Rodrigues M. O. (2022) Catalytic Approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. Molecules, 27, 132; DOI: https://doi.org/10.3390/molecules27010132
2. John S. E., Gulati S., and Shankaraiah N. (2021) Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front., 8, 4237-4287; DOI: https://doi.org/10.1039/D0QO01480J
3. Graebin C. S., Ribeiro F. V., Rogério K. R., and Kümmerle A. E. (2019) Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr. Org. Synth., 16(6), 855-899; DOI: 10.2174/1570179416666190718153703
4. Climent M. J., Corma A., and Iborra S. (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2, 16-58; DOI: https://doi.org/10.1039/C1RA00807B
5. Chopda L. V., and Dave P. N. (2020) Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015-19: A concise review. ChemistrySelect, 5, 5552-5572; DOI: https://doi.org/10.1002/slct.202000742
6. Patil R. V., Chavan J. U., Dalal D. S., Shinde V. S., and Beldar A. G. (2019) Biginelli Reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 21, 105-148; DOI: 10.1021/acscombsci.8b00120
7. Panda S. S., Khanna P., and Khanna L. (2012) Biginelli Reaction: A green perspective. Curr. Org. Chem. 16, 507-520; DOI: 10.2174/138527212799499859
8. Mohammadi B., and Behbahani F. K. (2018) Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol. Divers., 22, 405-446; DOI: https://doi.org/10.1007/s11030-017-9806-z
9. George N., Manakkadan A. A., Ariyath A., Maniyamma S., Vijayakumar V., Pai R. G., and Zachariah S. M. (2019) Chemistry and pharmacological activities of Biginelli product-A brief overview. Curr. Drug Discov. Technol., 16,127-134; DOI: 10.2174/1570163815666180807141922
10. Marinescu M. (2021) Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules, 26, 6022; DOI: https://doi.org/10.3390/molecules26196022
11. Sarrafi Y., Pazokie F., Azizi S., Alimohammadi K., Mehrasbi E., and Chiani, E. (2014). Mesoporous SBA-15 nanoparticles: An efficient and eco-friendly Catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Curr. Chem. Lett., 3(2), 97-102; DOI: 10.5267/j.ccl.2013.12.003
12. Kaur R., Chaudhary S., Kumar K., Gupta M. K., and Rawal R. K. (2017) Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 132, 108-134; DOI: 10.1016/j.ejmech.2017.03.025
13. Khasimbi S., Ali F., Manda K., Sharma A., Chauhan G., and Wakode S. (2021) Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 18(3), 270-293; DOI: 10.2174/1570179417666201207215710
14. Sharma U., Kumar P., Kumar N., and Singh B. (2010) Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini. Rev. Med. Chem., 10, 678-704; DOI: 10.2174/138955710791572442
15. Abdulrahman H. S., Mohammed M. H., Al-Ani L. A., Ahmad M. H., Hashim N. M., and Yehye W. A. (2020) Synthesis of phthalimide imine derivatives as a potential anticancer agent. J. Chem., Article ID 3928204; DOI: https://doi.org/10.1155/2020/3928204
16. da Silva Júnior J. G., Holanda V. N., Gambôa D. S. R., Siqueira do Monte T. V., de Araújo H. D. A., do Nascimento Júnior J. A. A., Alves do Nascimento Júnior J. A., da Silva Araújo V. F., Callôu M. A. M., de Oliveira Assis S. P., and Lima V. L. M. (2019) Therapeutic potential of phthalimide derivatives: A review. Amer. J. Biomed. Sci. Res., 3, 378-384; DOI: 10.34297/AJBSR.2019.03.000699
17. Kamal A., Adil S. F., Tamboli J. R., Siddardha, B., and Murthy U. S. N. (2008) Synthesis and anticancer activity of phthalimido and naphthalimido substituted dihydromyrimidone conjugates. Lett. Drug. Des. Disc., 5, 261-270; DOI: 10.2174/157018008784619933
18. Malik M. S., Adil, S. F., Seddigi Z. S., Morad M., Jassas R. S., Thagafi I. I., Altass H. M., Jamal Q. M. S., Riyaz S., Alsantali R. I., Al-Warthan A. A., Ansari M. A., and Ahmed S. A. (2021) Molecular modelling assisted design of napthalimide-dihydropyrimidinone conjugates as potential cytotoxic agents. J. Saudi Chem. Soc., 25(5), 101226; DOI: https://doi.org/10.1016/j.jscs.2021.101226
19. Marinov M. N., Naydenova E. D., Momekov G. T., Prodanova R. Y., Markova N. V., Voynikov Y. T., and Stoyanov N. M. (2019) Synthesis, characterization, quantum-chemical calculations and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids. Anticancer Agents Med. Chem., 19(10), 1276-1284; DOI: 10.2174/1871520619666190307115231
20. Jin C., Alenazy R., Wang Y., Mowla R., Qin Y., Tan J., Modi N., Gu X., Polyak S., Venter H., and Ma, S. (2019) Design, synthesis and evaluation of a series of 5-methoxy-2,3-naphthalimide derivatives as AcrB inhibitors for the reversal of bacterial resistance. Bioorg. Med. Chem. Lett., 29(7), 882-889; DOI: 10.1016/j.bmcl.2019.02.003
21. Chen R., Yuan C., Jaiswal, Y., Huo L., Li D., Williams L., Zhong J., and Liang Y. (2020) Synthesis and biological evaluation of some 1,8-naphthalimide-acridinyl hybrids. J. Chem., Article ID 7989852; DOI: https://doi.org/10.1155/2020/7989852
22. Yildiz U., Kandemir I., Cömert F., Akkoç S., and Coban B. (2020) Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds‑ and G‑quadruplex‑DNA binding studies and related biological activities. Mol. Biol. Rep. 47(3), 1563-1572; DOI: https://doi.org/10.1007/s11033-019-05239-y
23. Varala R., Narayana V., Kulakarni S. R., Khan M., Alwarthan A., and Adil S. F. (2016) Sulfated tin oxide (STO)-Structural properties and application in catalysis: A review. Arabian J. Chem., 9, 550-573; DOI: https://doi.org/10.1016/j.arabjc.2016.02.015
24. Dubasi N. S., and Varala R. (2022) Applications of sulfated tin oxide (STO) in organic synthesis-Update from 2016 to 2021. Heterocycles, 104 (5), 843-853; DOI: 10.3987/REV-22-978
25. Prasad C. S. N., Varala R., and Adapa S. R. (2002) A facile preparation of phthalimides and a new approach to the synthesis of indoprofen-Anti- inflammatory agent. Heterocycl. Commun., 281-286; DOI: 10.1515/HC.2002.8.3.281
26. Varala R., and Adapa S. R. (2005) A practical and efficient synthesis of thalidomide via Na/liq.NH3 methodology. Org. Proc. Res. Dev., 9, 853-856; DOI: 10.1021/op050129z
27. Varala R., and Adapa S. R. (2006) A novel approach to the synthesis of (R,S)-Baclofen via Pd(II)-bipyridine catalyzed conjugative addition. Synth. Commun., 36, 3743-3747; DOI: 10.1080/00397910600946249
28. Varala R., Alam M. M., and Adapa S. R. (2003) Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: An improved protocol for the Biginelli reaction. Synlett, 67-70; DOI: 10.1055/s-2003-36216
29. Ramu E., Kotra V., Bansal N., Varala. R., and Adapa S. R. (2008) Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 1, 188-194
30. Varala R., Kotra V., Alam M. M., Kumar N. R., Ganapaty S., and Adapa S. R. (2008) Synthesis of mandelic acid derived phthalimides as a new class of anti-inflammatory and antimicrobial Agents. Ind. J. Chem. Sec. B, 47B, 1243-1248
31. Kotra V., Reddy V. V. R., Harika K. S., Babu B. H., Jayashree A., and Varala R. (2014) Synthesis of novel 5-carboxynaphthanilide dihydropyrimidine derivatives and evaluation of their biological activity. Int. J. Pharm. Chem.Sci., 3, 915-921
32. Goud K. R., Pagadala R., Boodida S., and Varala R. (2020) SO4-2/SnO2-catalyzed cyclo-condensation for the synthesis of fully-functionalized pyridines. J. Het. Chem., 57, 923-928; DOI: 10.1002/jhet.3806
33. Pisal P. M., Sawant A. S., Kamble V. T., Varala R., Adil S. F., Khan M., and Siddiqui M. R. H. (2020) ZrCl4-Catalyzed one-pot multi-component synthesis of hexahydropyrano pyrimidinone derivatives. Org. Commun., 13, 28-32; DOI: http://doi.org/10.25135/acg.oc.72.20.02.1551.
34. Goud K. R., Pagadala R., Varala R., and Boodida S. (2021) An effective process for the synthesis of dihydropyridines via SO4-2/SnO2 catalyzed Hantzsch reaction. J. Chin. Chem. Soc., 68, 333-337; DOI: https://doi.org/10.1002/jccs.202000264
35. Prasad H., Ananda A., Mukarambi A., Gaonkar N., Sumathi S., Spoorthy H., and Mallu, P. (2023). Design, synthesis, and anti-bacterial activities of piperazine based phthalimide derivatives against superbug-Methicillin-Resistant Staphylococcus aureus. Curr. Chem. Lett., 12(1), 65-78; DOI: 10.5267/j.ccl.2022.9.005
36. Manasa K., Sidhaye R V., Radhika G., and Nalini C. N. (2011) Synthesis, antioxidant activity of quinazoline derivatives.CPR, 1(2), 101.
37. Turner R. A. Screening Methods in Pharmacology, (Academic Press, New York), 1965, 112.
38. Yassin O. M., Ismail S. M., Gameh M. A., Khalil F. A. F., and Ahmed E. M. (2022) Evaluation of chemical composition of roots of three sugar beets varieties growing under different water deficit and harvesting dates in Upper Egypt. Curr. Chem. Lett., 11(1), 1-10; DOI: 10.5267/j.ccl.2021.11.003
39. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize. Curr. Chem. Lett., 11(2), 219-226; DOI: 10.5267/j.ccl.2021.12.002
40. Abdel-Raheem S. A. A., El-Dean A. M. K., Abdul-Malik M. A., Marae I. S., Bakhite E. A., Hassanien R., Mohamed El-Sayed E. A., Zaki R. M., Tolba M. S., Sayed A. S. A., and Abd-Ella A. A. (2022) Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev. Roum. Chim., 67(4-5), 305-309; DOI: 10.33224/rrch.2022.67.4-5.09
41. Abd-Ella A. A., Metwally S. A., Abd ul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem S. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives Curr. Chem. Lett., 11 (2), 157-172; DOI: 10.5267/j.ccl.2022.2.004
42. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Seri S. M. A., Abdel-Raheem S. A. A., and Ul-Malik M. A. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chloro¬phen¬yl)-3-{[(4-chloro¬phen-yl)formamido]¬imino}-7-methyl-2H,3H,5H-[1,3]thia¬zolo[3,2-a]pyrimidine-6-carboxyl¬ate. Acta Cryst. E78, 846-850;
DOI: https://doi.org/10.1107/S205698902200603X
43. Kaid, M., Ali A. E., Shamsan A. Q. S., Younes S. M., Abdel-Raheem S. A. A., Abdul-Malik M. A., and Salem W. M. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater Curr. Chem. Lett., 11(4), 415-422; DOI: 10.5267/j.ccl.2022.4.005
44. Kappe C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type-a literature survey. Eur. J. Med. Chem., 35(12), 1043-1052; DOI: 10.1016/s0223-5234(00)01189-2
45. Sánchez-Sancho F., Escolano M., Gaviña D., Csáky A. G., Sánchez-Roselló M., Díaz-Oltra, S., Del Pozo S. (2022) Synthesis of 3,4-dihydropyrimidin(thio)one containing scaffold: Biginelli-like eactions. Pharmaceuticals 15(8), 948; DOI: 10.3390/ph15080948
46. Varala R. (2006) A facile synthesis of biologically active phthalimides & its analogues-A study, Ph. D Thesis, CSIR-IICT (http://www.csircentral.net/index.php/record/view/78721)
47. Neelottama K., and Kaushik D. (2016) Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci., 6(3), 159-171; DOI: 10.7324/JAPS.2016.60330
48. Chen Z., Xu Y., Qian, X. (2018) Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. Chin. Chem. Lett., 29(12), 1741-1756; DOI: https://doi.org/10.1016/j.cclet.2018.09.020
2. John S. E., Gulati S., and Shankaraiah N. (2021) Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front., 8, 4237-4287; DOI: https://doi.org/10.1039/D0QO01480J
3. Graebin C. S., Ribeiro F. V., Rogério K. R., and Kümmerle A. E. (2019) Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr. Org. Synth., 16(6), 855-899; DOI: 10.2174/1570179416666190718153703
4. Climent M. J., Corma A., and Iborra S. (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2, 16-58; DOI: https://doi.org/10.1039/C1RA00807B
5. Chopda L. V., and Dave P. N. (2020) Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015-19: A concise review. ChemistrySelect, 5, 5552-5572; DOI: https://doi.org/10.1002/slct.202000742
6. Patil R. V., Chavan J. U., Dalal D. S., Shinde V. S., and Beldar A. G. (2019) Biginelli Reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 21, 105-148; DOI: 10.1021/acscombsci.8b00120
7. Panda S. S., Khanna P., and Khanna L. (2012) Biginelli Reaction: A green perspective. Curr. Org. Chem. 16, 507-520; DOI: 10.2174/138527212799499859
8. Mohammadi B., and Behbahani F. K. (2018) Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol. Divers., 22, 405-446; DOI: https://doi.org/10.1007/s11030-017-9806-z
9. George N., Manakkadan A. A., Ariyath A., Maniyamma S., Vijayakumar V., Pai R. G., and Zachariah S. M. (2019) Chemistry and pharmacological activities of Biginelli product-A brief overview. Curr. Drug Discov. Technol., 16,127-134; DOI: 10.2174/1570163815666180807141922
10. Marinescu M. (2021) Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules, 26, 6022; DOI: https://doi.org/10.3390/molecules26196022
11. Sarrafi Y., Pazokie F., Azizi S., Alimohammadi K., Mehrasbi E., and Chiani, E. (2014). Mesoporous SBA-15 nanoparticles: An efficient and eco-friendly Catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Curr. Chem. Lett., 3(2), 97-102; DOI: 10.5267/j.ccl.2013.12.003
12. Kaur R., Chaudhary S., Kumar K., Gupta M. K., and Rawal R. K. (2017) Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 132, 108-134; DOI: 10.1016/j.ejmech.2017.03.025
13. Khasimbi S., Ali F., Manda K., Sharma A., Chauhan G., and Wakode S. (2021) Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 18(3), 270-293; DOI: 10.2174/1570179417666201207215710
14. Sharma U., Kumar P., Kumar N., and Singh B. (2010) Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini. Rev. Med. Chem., 10, 678-704; DOI: 10.2174/138955710791572442
15. Abdulrahman H. S., Mohammed M. H., Al-Ani L. A., Ahmad M. H., Hashim N. M., and Yehye W. A. (2020) Synthesis of phthalimide imine derivatives as a potential anticancer agent. J. Chem., Article ID 3928204; DOI: https://doi.org/10.1155/2020/3928204
16. da Silva Júnior J. G., Holanda V. N., Gambôa D. S. R., Siqueira do Monte T. V., de Araújo H. D. A., do Nascimento Júnior J. A. A., Alves do Nascimento Júnior J. A., da Silva Araújo V. F., Callôu M. A. M., de Oliveira Assis S. P., and Lima V. L. M. (2019) Therapeutic potential of phthalimide derivatives: A review. Amer. J. Biomed. Sci. Res., 3, 378-384; DOI: 10.34297/AJBSR.2019.03.000699
17. Kamal A., Adil S. F., Tamboli J. R., Siddardha, B., and Murthy U. S. N. (2008) Synthesis and anticancer activity of phthalimido and naphthalimido substituted dihydromyrimidone conjugates. Lett. Drug. Des. Disc., 5, 261-270; DOI: 10.2174/157018008784619933
18. Malik M. S., Adil, S. F., Seddigi Z. S., Morad M., Jassas R. S., Thagafi I. I., Altass H. M., Jamal Q. M. S., Riyaz S., Alsantali R. I., Al-Warthan A. A., Ansari M. A., and Ahmed S. A. (2021) Molecular modelling assisted design of napthalimide-dihydropyrimidinone conjugates as potential cytotoxic agents. J. Saudi Chem. Soc., 25(5), 101226; DOI: https://doi.org/10.1016/j.jscs.2021.101226
19. Marinov M. N., Naydenova E. D., Momekov G. T., Prodanova R. Y., Markova N. V., Voynikov Y. T., and Stoyanov N. M. (2019) Synthesis, characterization, quantum-chemical calculations and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids. Anticancer Agents Med. Chem., 19(10), 1276-1284; DOI: 10.2174/1871520619666190307115231
20. Jin C., Alenazy R., Wang Y., Mowla R., Qin Y., Tan J., Modi N., Gu X., Polyak S., Venter H., and Ma, S. (2019) Design, synthesis and evaluation of a series of 5-methoxy-2,3-naphthalimide derivatives as AcrB inhibitors for the reversal of bacterial resistance. Bioorg. Med. Chem. Lett., 29(7), 882-889; DOI: 10.1016/j.bmcl.2019.02.003
21. Chen R., Yuan C., Jaiswal, Y., Huo L., Li D., Williams L., Zhong J., and Liang Y. (2020) Synthesis and biological evaluation of some 1,8-naphthalimide-acridinyl hybrids. J. Chem., Article ID 7989852; DOI: https://doi.org/10.1155/2020/7989852
22. Yildiz U., Kandemir I., Cömert F., Akkoç S., and Coban B. (2020) Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds‑ and G‑quadruplex‑DNA binding studies and related biological activities. Mol. Biol. Rep. 47(3), 1563-1572; DOI: https://doi.org/10.1007/s11033-019-05239-y
23. Varala R., Narayana V., Kulakarni S. R., Khan M., Alwarthan A., and Adil S. F. (2016) Sulfated tin oxide (STO)-Structural properties and application in catalysis: A review. Arabian J. Chem., 9, 550-573; DOI: https://doi.org/10.1016/j.arabjc.2016.02.015
24. Dubasi N. S., and Varala R. (2022) Applications of sulfated tin oxide (STO) in organic synthesis-Update from 2016 to 2021. Heterocycles, 104 (5), 843-853; DOI: 10.3987/REV-22-978
25. Prasad C. S. N., Varala R., and Adapa S. R. (2002) A facile preparation of phthalimides and a new approach to the synthesis of indoprofen-Anti- inflammatory agent. Heterocycl. Commun., 281-286; DOI: 10.1515/HC.2002.8.3.281
26. Varala R., and Adapa S. R. (2005) A practical and efficient synthesis of thalidomide via Na/liq.NH3 methodology. Org. Proc. Res. Dev., 9, 853-856; DOI: 10.1021/op050129z
27. Varala R., and Adapa S. R. (2006) A novel approach to the synthesis of (R,S)-Baclofen via Pd(II)-bipyridine catalyzed conjugative addition. Synth. Commun., 36, 3743-3747; DOI: 10.1080/00397910600946249
28. Varala R., Alam M. M., and Adapa S. R. (2003) Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: An improved protocol for the Biginelli reaction. Synlett, 67-70; DOI: 10.1055/s-2003-36216
29. Ramu E., Kotra V., Bansal N., Varala. R., and Adapa S. R. (2008) Green approach for the efficient synthesis of Biginelli compounds promoted by citric acid under solvent-free conditions. Rasayan J. Chem., 1, 188-194
30. Varala R., Kotra V., Alam M. M., Kumar N. R., Ganapaty S., and Adapa S. R. (2008) Synthesis of mandelic acid derived phthalimides as a new class of anti-inflammatory and antimicrobial Agents. Ind. J. Chem. Sec. B, 47B, 1243-1248
31. Kotra V., Reddy V. V. R., Harika K. S., Babu B. H., Jayashree A., and Varala R. (2014) Synthesis of novel 5-carboxynaphthanilide dihydropyrimidine derivatives and evaluation of their biological activity. Int. J. Pharm. Chem.Sci., 3, 915-921
32. Goud K. R., Pagadala R., Boodida S., and Varala R. (2020) SO4-2/SnO2-catalyzed cyclo-condensation for the synthesis of fully-functionalized pyridines. J. Het. Chem., 57, 923-928; DOI: 10.1002/jhet.3806
33. Pisal P. M., Sawant A. S., Kamble V. T., Varala R., Adil S. F., Khan M., and Siddiqui M. R. H. (2020) ZrCl4-Catalyzed one-pot multi-component synthesis of hexahydropyrano pyrimidinone derivatives. Org. Commun., 13, 28-32; DOI: http://doi.org/10.25135/acg.oc.72.20.02.1551.
34. Goud K. R., Pagadala R., Varala R., and Boodida S. (2021) An effective process for the synthesis of dihydropyridines via SO4-2/SnO2 catalyzed Hantzsch reaction. J. Chin. Chem. Soc., 68, 333-337; DOI: https://doi.org/10.1002/jccs.202000264
35. Prasad H., Ananda A., Mukarambi A., Gaonkar N., Sumathi S., Spoorthy H., and Mallu, P. (2023). Design, synthesis, and anti-bacterial activities of piperazine based phthalimide derivatives against superbug-Methicillin-Resistant Staphylococcus aureus. Curr. Chem. Lett., 12(1), 65-78; DOI: 10.5267/j.ccl.2022.9.005
36. Manasa K., Sidhaye R V., Radhika G., and Nalini C. N. (2011) Synthesis, antioxidant activity of quinazoline derivatives.CPR, 1(2), 101.
37. Turner R. A. Screening Methods in Pharmacology, (Academic Press, New York), 1965, 112.
38. Yassin O. M., Ismail S. M., Gameh M. A., Khalil F. A. F., and Ahmed E. M. (2022) Evaluation of chemical composition of roots of three sugar beets varieties growing under different water deficit and harvesting dates in Upper Egypt. Curr. Chem. Lett., 11(1), 1-10; DOI: 10.5267/j.ccl.2021.11.003
39. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize. Curr. Chem. Lett., 11(2), 219-226; DOI: 10.5267/j.ccl.2021.12.002
40. Abdel-Raheem S. A. A., El-Dean A. M. K., Abdul-Malik M. A., Marae I. S., Bakhite E. A., Hassanien R., Mohamed El-Sayed E. A., Zaki R. M., Tolba M. S., Sayed A. S. A., and Abd-Ella A. A. (2022) Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev. Roum. Chim., 67(4-5), 305-309; DOI: 10.33224/rrch.2022.67.4-5.09
41. Abd-Ella A. A., Metwally S. A., Abd ul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem S. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives Curr. Chem. Lett., 11 (2), 157-172; DOI: 10.5267/j.ccl.2022.2.004
42. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Seri S. M. A., Abdel-Raheem S. A. A., and Ul-Malik M. A. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chloro¬phen¬yl)-3-{[(4-chloro¬phen-yl)formamido]¬imino}-7-methyl-2H,3H,5H-[1,3]thia¬zolo[3,2-a]pyrimidine-6-carboxyl¬ate. Acta Cryst. E78, 846-850;
DOI: https://doi.org/10.1107/S205698902200603X
43. Kaid, M., Ali A. E., Shamsan A. Q. S., Younes S. M., Abdel-Raheem S. A. A., Abdul-Malik M. A., and Salem W. M. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater Curr. Chem. Lett., 11(4), 415-422; DOI: 10.5267/j.ccl.2022.4.005
44. Kappe C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type-a literature survey. Eur. J. Med. Chem., 35(12), 1043-1052; DOI: 10.1016/s0223-5234(00)01189-2
45. Sánchez-Sancho F., Escolano M., Gaviña D., Csáky A. G., Sánchez-Roselló M., Díaz-Oltra, S., Del Pozo S. (2022) Synthesis of 3,4-dihydropyrimidin(thio)one containing scaffold: Biginelli-like eactions. Pharmaceuticals 15(8), 948; DOI: 10.3390/ph15080948
46. Varala R. (2006) A facile synthesis of biologically active phthalimides & its analogues-A study, Ph. D Thesis, CSIR-IICT (http://www.csircentral.net/index.php/record/view/78721)
47. Neelottama K., and Kaushik D. (2016) Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci., 6(3), 159-171; DOI: 10.7324/JAPS.2016.60330
48. Chen Z., Xu Y., Qian, X. (2018) Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. Chin. Chem. Lett., 29(12), 1741-1756; DOI: https://doi.org/10.1016/j.cclet.2018.09.020