How to cite this paper
Chinta, B., Satyadev, T & Adilakshmi, a. (2023). Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted Imidazoles.Current Chemistry Letters, 12(1), 175-184.
Refrences
1. John S. E., Gulati S., and Shankaraiah N. (2021) Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front., 8, 4237-4287; DOI: https://doi.org/10.1039/D0QO01480J
2. Graebin C. S., Ribeiro F. V., Rogério K. R., and Kümmerle A. E. (2019) Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr. Org. Synth., 16(6), 855-899; DOI: 10.2174/1570179416666190718153703
3. Zarganes-Tzitzikas T., Chandgude A. L., and Dömling, A. (2015) Multicomponent Reactions, Union of MCRs and Beyond. Chem. Rec., 15(5), 981-996; DOI: http://dx.doi.org/10.1002/tcr.201500201
4. Abd-Ella A. A., Saoud A. Metwally, S. A., Abd ul-Malikc M. A., El-Ossailyb Y. A., Abd Elrazek, F. M., Aref S. A., Youssra A. Naffeaf Y. A., and Abdel-Raheemg S. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett. 11, 157-172; DOI: 10.5267/j.ccl.2022.2.004
5. Tolba M. S., Abd ul-Malik M. A., Kamal El-Dean A. M., Geies A. A., Radwan S. M., Zaki R. M., Sayed M., Mohamed S. K., and Abdel-Raheemg S. A. A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett. 11, 29-42; DOI: 10.5267/j.ccl.2021.009.007
6. Tolba M. S., Sayed M., Kamal El-Dean A. M., Hassanien R., Abdel-Raheemg S. A. A., and Ahmed M. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines Org. Commun. 14 (4), 334-345; DOI: http://doi.org/10.25135/acg.oc.114.2109.2214
7. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheemg S. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett. 11, 285-290; DOI: 10.5267/j.ccl.2022.3.006
8. Tanaka K., and Toda, F. (2000) Solvent-free Organic Synthesis. Chem. Rev., 100(3), 1025-1074; DOI: http://dx.doi.org/10.1021/cr940089p
9. Zangade S., and Patil P. (2019) A Review on Solvent-free Methods in Organic Synthesis. Curr. Org. Chem., 23, 2295-2318; DOI: http://dx.doi.org/10.2174/1385272823666191016165532
10. Verma A., Joshi S., and Singh D. (2013) Imidazole: Having Versatile Biological Activities. J. Chem. Volume 2013, Article ID 329412; DOI: https://doi.org/10.1155/2013/329412
11. Luca L. D. (2006) Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Curr. Med. Chem. 13(1), 1-23; DOI: 10.2174/0929867310607010001
12. Richaud A., Barba-Behrens N., and Méndez F. (2011) Chemical Reactivity of the Imidazole: A Semblance of Pyridine and Pyrrole? Org. Lett. 13(5), 972-975; DOI: https://doi.org/10.1021/ol103011h
13. Rani N., Kumar P., Singh R., de Sousa D. P., and Sharma P. (2020) Current and Future Prospective of a Versatile Moiety: Imidazole. Current Drug Targets, 21(11), 1130-1155; DOI: 10.2174/1389450121666200530203247
14. Welton T., (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 99(8), 2071-2084; DOI: https://doi.org/10.1021/cr980032t
15. Satoru, Japn Kokkai Tokyo Koho (1989) JP 01, 117, 867, 10 May, 1989, Chem. Abstr., 1989, 111, 214482
16. Shabalin D. A., and Camp, J. E. (2020) Recent advances in the synthesis of imidazoles. Org. Biomol. Chem., 18, 3950-3964; DOI: https://doi.org/10.1039/D0OB00350F
17. Patel G., Dewangan D. K., Bhakat N., and Banerjee S. (2021) Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review. Current Research in Green and Sustainable Chemistry. Volume 4, 100175; DOI: https://doi.org/10.1016/j.crgsc.2021.100175
18. Siwach A., and Verma, P. K. (2021) Synthesis and therapeutic potential of imidazole containing compounds. BMC Chemistry 15 (12), 1-69; DOI: https://doi.org/10.1186/s13065-020-00730-1
19. Zhao M., Yang Z., and Yang D. (2022) Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. Chin. J. Org. Chem. 42 (1), 111-128; DOI: 10.6023/cjoc202107014
20. Kadu V. D., Mali G. A., Khadul S. P., and Kothe G. J. (2021) Simple practical method for synthesis of trisubstituted imidazoles: an efficient copper catalyzed multicomponent reaction. RSC Adv., 11, 21955-21963; DOI: 10.1039/d1ra01767e
21. Sakhdari M., Amoozadeh A., and Kolvari E. (2021) Magnetic nanoparticle-supported sulfonic acid as a green catalyst for the one-pot synthesis of 2,4,5-trisubstituted imidazoles and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions. Heterocyclic Communications 27, 71-78; DOI: https://doi.org/10.1515/hc-2020-0125
22. Dipake S. S., Ingale V. D., Korde S. A., Lande M. K., Rajbhoj A. S., and Gaikwad S. T. (2022) An efficient green protocol for the synthesis of 1,2,4,5-tetrasubstituted imidazoles in the presence of ZSM-11 zeolite as a reusable catalyst. RSC Adv., 12, 4358-4369; DOI: 10.1039/D1RA07984K
23. Bagwan S. M., and Asif M. (2022) An Efficient and One Pot Synthesis of 2,4,5-Trisubstituted Imidazole Derivatives Catalyzed by Silver Nanoparticles. Asian J. Chem. 34(4), 889-893; DOI: 10.14233/ajchem.2022.23589
24. Parthiban D., and Karunakaran, R. J. (2018) Benzethonium Chloride Catalyzed One Pot Synthesis of 2,4,5-trisubstituted Imidazoles and 1,2,4,5-tetrasubstituted Imidazoles in Aqueous Ethanol as a Green Solvent. Oriental J. Chem. 34(6), 3004-3015
25. Shixaliyev N. Q., Maharramov, A. M., Gurbanov A. V., Nenajdenko V. G., Muzalevskiy, V. M., Mahmudov K. T., and Kopylovich M. N. (2013) Zinc(II)-1,3,5-triazapentadienate complex as effective catalyst in Henry reaction. Catalysis Today 217 (15), 76-79; DOI: https://doi.org/10.1016/j.cattod.2013.06.013
26. Bijanzad K., Tadjarodi A., & Akhavan, O. (2015) Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II). (2015) Chin. J. Catal. 36 (5), 742-749. DOI: https://doi.org/10.1016/S1872-2067(14)60305-3
27. Appavoo D., van Wyk J. L., Spencer L. C., Guzei I. A., and James Darkwa J. (2022) Pyrazolyl-based zinc(II) carboxylate complexes: synthesis, characterization and catalytic behaviour in ring opening polymerization of ε-caprolactone and D,L-lactide. Results in Chem. 4, 100261; DOI: https://doi.org/10.1016/j.rechem.2021.100261
28. Cavalleri M., Panza N., Biase A., Tseberlidis G., Rizzato S., Abbiati G., and Caselli, A. (2021) [Zinc(II)(Pyridine-Containing Ligand)] Complexes as Single Component Efficient Catalyst for Chemical Fixation of CO2 with Epoxides. Eur. J. Org. Chem. 2764-2771; DOI: doi.org/10.1002/ejoc.2021004
29. Stephan Enthaler, Xiao-Feng Wu. (2015) Zinc Catalysis: Applications in Organic Synthesis. DOI: 10.1002/9783527675944
30. Ahn C., Campbell R. F., and Feldman K. S. (1997) Zinc Acetate as a Catalyst for Di- and Tri imide Formation 1,8-Naphthalic Anhydride and Aromatic Polyamides. Bull. Korean Chem. Soc. 1997, 18 (4), 441-442
31. Arigala U. R. S., Matcha C., and Yoon, K. R. (2012) Zn(OAc)2•2H2O-catalyzed synthesis of α-aminophosphonates under neat reaction. Heteroatom Chemistry, 23 (2), 160-165; DOI: https://doi.org/10.1002/hc.20765
32. Babu H. B., Varala R., and Alam M. M. (2022) Zn(OAc)2⋅2H2O-Catalyzed Betti base Synthesis under Solvent-free Conditions. Lett. Org. Chem. 19(1), 14-18; DOI: 10.2174/1570178618666210616155257
33. Reddy V. V. R., Saritha B., Ramu R., Varala R., and Jayashree A. (2014) Zn(OAc)2⋅2H2O-catalyzed one-pot efficient synthesis of amino nitriles. Asian. J. Chem. 26, 7439-7442
34. Qin Y., Zhou D., and Li M. (2012) Zinc acetate as a catalyst for the hydroacylation reaction of azodicarboxylates with aldehydes. Lett. Org. Chem. 9(4), 267-272; DOI: 10.2174/157017812800233741
35. Ramu E., Varala R., Sreelatha N., and Adapa S. R. (2007) Zn(OAc)2·2H2O: a versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett. 48(40), 7184-7190; DOI: 10.1016/j.tetlet.2007.07.196
36. Reddy M. M. B. (2011) Zn(OAc)2·2H2O‐Catalyzed, Simple, and Clean Procedure for the Synthesis of 2‐Substituted Benzoxazoles Using a Grindstone Method. Synth. Commun. 41(12), 1838-1842, DOI: http://dx.doi.org/10.1080/00397911.2010.493260
37. Nie Y., Zhi X., Du H., and Yang J. (2018) Zn(OAc)2-Catalyzing Ring-Opening Polymerization of N-Carboxyanhydrides for the Synthesis of Well-Defined Polypeptides. Molecules, 23(4), 760; DOI: 10.3390/molecules23040760
38. Bonkuri P., and Jeripothula M. (2018) Zinc (II) Acetate Catalyzed Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. J. Chem. Pharm. Res., 10(5), 132-136
39. Das S., Addis D., Zhou S., Junge K., and Beller, M. (2010) Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc., 132 (6), 1770-1771; DOI: https://doi.org/10.1021/ja910083q
40. Węglarz I., Szewczyk M., Mlynarski J. (2020) Zinc Acetate Catalyzed Enantioselective Reductive Aldol Reaction of Ketones. Adv. Synth. Catal. 362(7), 1532-1536; DOI: https://doi.org/10.1002/adsc.201901457
41. Gowda R. R., and Chakraborty D. (2010) Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. Journal of Molecular Catalysis A: Chemical., 333, 1-2, 167-172; DOI: https://doi.org/10.1016/j.molcata.2010.10.013
42. Bonkuri P., and Jeripothula M. (2020) Zinc Acetate Catalyzed Mannich Reaction: An Efficient Procedure for the Synthesis of β-amino Carbonyl Compounds. J. Emerg. Technol. Innov. Res. 7(1), 524-531.