How to cite this paper
Arunachalam, A., Induja, S., Parthasarathy, V & Raghavan, P. (2022). Antibacterial and antifungal studies of Zn-CaB as a promising antimicrobial agent incorporated health care and cosmetic products.Current Chemistry Letters, 11(2), 173-182.
Refrences
1 Chang F., Shen S., Shi P., Zhang H., Ye L., Zhou Q., Pan Y., and Li A. (2019) Antimicrobial resins with quaternary ammonium salts as a supplement to combat the antibiotic resistome in drinking water treatment plants. Chemosphere, 221, 132-140.
2 Zare E. N., Makvandi P., Borzacchiello A., Tay F. R., Ashtari B., and Padil V. T. V. (2019) Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun., 55, 14871.
3 Zare E. N., Jamaledin R., Naserzadeh P., Afjeh-Dana E., Ashtari B., Hosseinzadeh M., Vecchione R., Wu A., Tay F. R., Borzacchiello A., and Makvandi P. (2020) Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS Appl. Mater. Interfaces, 12, 3279-3300.
4 Moeini A., Pedram P., Makvandi P., Malinconico M., and Ayala G. G. D. (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 223, 115839.
5 Tiwari V., Mishra N., Gadani K., Solanki P. S., Shah N. A., and Tiwari M. (2018) Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol., 9, 1218.
6 Pavel H., Sylvie S., Lenka Ua., Daria B., Silvia K., Zuzana B., Eliska K., Zuzana L., Natalia Cernei, Milica Gagic, Vedran Milosavljevic, Vendula Smolikova, Eva Vaclavkova, Pavel Nevrkla, Pavel Knot, Olga Krystofova, David Hynek, Pavel Kopel, Jiri Skladanka, Vojtech Adam and Kristyna Smerkova. (2019) Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J. Anim. Sci. Biotechnol., 10, 17.
7 Yan-Wen W., Aoneng C., Yu J., Xin Zhang, Jia-Hui Liu, Yuanfang Liu, and Haifang Wang. (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces, 6(4), 2791-2798.
8 Lili H., Yang L., Azlin M., and Mengshi Lin. (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 166(3), 207-215.
9 Saravana Kumar R., Dananjaya S. H. S., Mahanama De Z., and Minyang Y. (2016) Enhanced antifungal activity of Ni doped ZnO nanostructures under dark conditions. RSC Adv., 6, 108468-108476.
10 Sanjeevi J., He L., Lin T., Chunzhi Li, Lina Liu, Jian Chen and Qihua Yang. (2018) Cationic Zn-Porphyrin Immobilized in Mesoporous Silica as Bifunctional Catalyst for CO2 Cycloaddition Reaction under Co-catalyst Free Conditions, Sustainable chemical engineering. ACS Sustain. Chem. Eng., 6, 9237–9245.
11 Sukdeb P., Eun Jeong Y., Sun Hee P., Eung Chil Choi and Joon Myong Song. (2010) Metallopharmaceuticals based on silver(I) and silver(II) polydiguanide complexes: activity against burn wound pathogens. J. Antimicrob. Chemother., 65(10), 2134-2140.
12 Arivalagan P., Smita S. Kumar, Manikandan M., Muthupandian S. (2018) Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microbiol. Pathogens, 122, 84-89.
13 Angelo T., Yuri A., Diaz Fernandez, Elvio Amato, Lucia Cucca, Giacomo Dacarro, Pietro Grisoli, Vittorio Necchi∥, Piersandro Pallavicini, Luca Pasotti, and Maddalena Patrini. (2012) Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Langmuir, 28, 21, 8140–8148.
14 Javier A., Garza-Cervantes, Arturo C., Elena C. Castillo, Gerardo García-Rivas, Oscar Antonio Ortega-Rivera, Eva Salinas, Margarita Ortiz-Martínez, Sara Leticia Gómez-Flores, Jorge A. Peña-Martínez, Alan Pepi-Molina, Mario T., Treviño-González, Xristo Zarate, María Elena Cantú-Cárdenas, Carlos Enrique Escarcega-Gonzalez and J. Rubén Morones-Ramírez. (2017) Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments. Sci. Rep., 7, 903.
15 Eman M., Ola M. El-Borady, Mona B. Mohamed and Irene S. Fahim. (2020) Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J. Radiat. Res. Appl. Sci., 13, 416-425.
16 Salome E., Rainer P. Lehmann, Murray J. Height, Martin J. Loessner and Markus Schuppler. (2009) Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Appl. Environ. Microbiol., 75(9), 2973-2976.
17 Lei H., Hongtao Yang, Yanhua Zhang and Wei Xiao. (2016) Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites. J. Nanomater., 5685967.
18 Furno F., Morley K. S., Wong B., Sharp B. L., and Howdle S. M. (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J. Antimicrob. Chemother., 54, 1019-1024.
19 Kong H., and Jang J. (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24, 2051-2056.
20 Jevons MP. (1961) “Celbenin”- resistant Staphylococci. Br. Med. J., 1, 124–125.
21 Cheng Y., Xiao H., Guo W., and Guo W. (2006) Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int., 444, 173–178.
22 El-Egili K., Doweidar H., Moustafa Y. M., and Abbas I. (2003) Structure and some physical properties of PbO-P2O5 glasses. Physica B, 339, 237–245.
23 Boulos E. N., and Kreidl J. N. J. (1971) Structure and properties of silver borate glasses. J. Am. Ceram. Soc., 54, 368–375.
24 Takayoshi K., Miki T., Akihiro M., Hayato M., Tadayuki T., Kohji N., Daisuke G., and Sadanori A. (2019) Fatty Acid Potassium Had Beneficial Bactericidal Effects and Removed Staphylococcus aureus Biofilms while Exhibiting Reduced Cytotoxicity towards Mouse Fibroblasts and Human Keratinocytes. Int. J. Mol. Sci., 20, 312.
25 Corral L., Post L., and Montville T. (2006) Antimicrobial Activity of Sodium Bicarbonate. J. Food Sci., 53, 981 – 982.
2 Zare E. N., Makvandi P., Borzacchiello A., Tay F. R., Ashtari B., and Padil V. T. V. (2019) Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun., 55, 14871.
3 Zare E. N., Jamaledin R., Naserzadeh P., Afjeh-Dana E., Ashtari B., Hosseinzadeh M., Vecchione R., Wu A., Tay F. R., Borzacchiello A., and Makvandi P. (2020) Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS Appl. Mater. Interfaces, 12, 3279-3300.
4 Moeini A., Pedram P., Makvandi P., Malinconico M., and Ayala G. G. D. (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 223, 115839.
5 Tiwari V., Mishra N., Gadani K., Solanki P. S., Shah N. A., and Tiwari M. (2018) Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol., 9, 1218.
6 Pavel H., Sylvie S., Lenka Ua., Daria B., Silvia K., Zuzana B., Eliska K., Zuzana L., Natalia Cernei, Milica Gagic, Vedran Milosavljevic, Vendula Smolikova, Eva Vaclavkova, Pavel Nevrkla, Pavel Knot, Olga Krystofova, David Hynek, Pavel Kopel, Jiri Skladanka, Vojtech Adam and Kristyna Smerkova. (2019) Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J. Anim. Sci. Biotechnol., 10, 17.
7 Yan-Wen W., Aoneng C., Yu J., Xin Zhang, Jia-Hui Liu, Yuanfang Liu, and Haifang Wang. (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces, 6(4), 2791-2798.
8 Lili H., Yang L., Azlin M., and Mengshi Lin. (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 166(3), 207-215.
9 Saravana Kumar R., Dananjaya S. H. S., Mahanama De Z., and Minyang Y. (2016) Enhanced antifungal activity of Ni doped ZnO nanostructures under dark conditions. RSC Adv., 6, 108468-108476.
10 Sanjeevi J., He L., Lin T., Chunzhi Li, Lina Liu, Jian Chen and Qihua Yang. (2018) Cationic Zn-Porphyrin Immobilized in Mesoporous Silica as Bifunctional Catalyst for CO2 Cycloaddition Reaction under Co-catalyst Free Conditions, Sustainable chemical engineering. ACS Sustain. Chem. Eng., 6, 9237–9245.
11 Sukdeb P., Eun Jeong Y., Sun Hee P., Eung Chil Choi and Joon Myong Song. (2010) Metallopharmaceuticals based on silver(I) and silver(II) polydiguanide complexes: activity against burn wound pathogens. J. Antimicrob. Chemother., 65(10), 2134-2140.
12 Arivalagan P., Smita S. Kumar, Manikandan M., Muthupandian S. (2018) Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microbiol. Pathogens, 122, 84-89.
13 Angelo T., Yuri A., Diaz Fernandez, Elvio Amato, Lucia Cucca, Giacomo Dacarro, Pietro Grisoli, Vittorio Necchi∥, Piersandro Pallavicini, Luca Pasotti, and Maddalena Patrini. (2012) Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria. Langmuir, 28, 21, 8140–8148.
14 Javier A., Garza-Cervantes, Arturo C., Elena C. Castillo, Gerardo García-Rivas, Oscar Antonio Ortega-Rivera, Eva Salinas, Margarita Ortiz-Martínez, Sara Leticia Gómez-Flores, Jorge A. Peña-Martínez, Alan Pepi-Molina, Mario T., Treviño-González, Xristo Zarate, María Elena Cantú-Cárdenas, Carlos Enrique Escarcega-Gonzalez and J. Rubén Morones-Ramírez. (2017) Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments. Sci. Rep., 7, 903.
15 Eman M., Ola M. El-Borady, Mona B. Mohamed and Irene S. Fahim. (2020) Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J. Radiat. Res. Appl. Sci., 13, 416-425.
16 Salome E., Rainer P. Lehmann, Murray J. Height, Martin J. Loessner and Markus Schuppler. (2009) Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Appl. Environ. Microbiol., 75(9), 2973-2976.
17 Lei H., Hongtao Yang, Yanhua Zhang and Wei Xiao. (2016) Study on Synthesis and Antibacterial Properties of Ag NPs/GO Nanocomposites. J. Nanomater., 5685967.
18 Furno F., Morley K. S., Wong B., Sharp B. L., and Howdle S. M. (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J. Antimicrob. Chemother., 54, 1019-1024.
19 Kong H., and Jang J. (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24, 2051-2056.
20 Jevons MP. (1961) “Celbenin”- resistant Staphylococci. Br. Med. J., 1, 124–125.
21 Cheng Y., Xiao H., Guo W., and Guo W. (2006) Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int., 444, 173–178.
22 El-Egili K., Doweidar H., Moustafa Y. M., and Abbas I. (2003) Structure and some physical properties of PbO-P2O5 glasses. Physica B, 339, 237–245.
23 Boulos E. N., and Kreidl J. N. J. (1971) Structure and properties of silver borate glasses. J. Am. Ceram. Soc., 54, 368–375.
24 Takayoshi K., Miki T., Akihiro M., Hayato M., Tadayuki T., Kohji N., Daisuke G., and Sadanori A. (2019) Fatty Acid Potassium Had Beneficial Bactericidal Effects and Removed Staphylococcus aureus Biofilms while Exhibiting Reduced Cytotoxicity towards Mouse Fibroblasts and Human Keratinocytes. Int. J. Mol. Sci., 20, 312.
25 Corral L., Post L., and Montville T. (2006) Antimicrobial Activity of Sodium Bicarbonate. J. Food Sci., 53, 981 – 982.