How to cite this paper
Hosseinzadeh, H & Mohammadi, S. (2013). Durable antibacterial finish on cotton fabric using hydrogel–silver nanocomposite.Current Chemistry Letters, 2(3), 109-118.
Refrences
1. Mao, J., Murphy, L. (2001) Durable freshness for textiles. AATCC Rev, 1, 28-31.
2. Vigo, T. L. (2001) Antimicrobial Polymers and Fibers: Retrospective and Prospective. In: Bioactive Fibres and Polymers. American Chemical Society. Washington DC, 175-200.
3. Galeano, B., Korff, E. and Nicholson, W. L. (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl. Environ. Microbiol. 69, 4329-4331.
4. Li, Y., Leung, P., Yao, L., Song, Q. W. and Newton, E. (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect., 62, 58–63.
5. Park, S. Y., Chung, J. W., Priestley, R. D. and Kwak, S. Y. (2012) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity, Cellulose 19, 2141–2151.
6. Mohan, Y. M., Premkumar, T., Lee, K. and Geckeler, K. E. (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol. Rapid Commun. 27, 1346–1354.
7. Mohan, Y. M., Lee, K., Premkumar, T. and Geckeler, K. E. (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48, 158–164.
8. Jeon, H. J., Yi, S. C. and Oh, S. G. (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials, 24, 4921-4928.
9. Sambhy, V. MacBride, M. M., Peterson, B. R. and Sen, A. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798-9808.
10. Khalil-Abad, M. Sh., and Yazdanshenas, M. E. (2010) Superhydrophobic antibacterial cotton textiles, J. Colloid Interface Sci. 351, 293–298.
11. Xiang, Y. and Chen, D. (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur. Polym. J. 43, 4178–4187.
12. Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Zhang, X., and Wang, Y.F. (2010) Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation. Ind. Eng. Chem. Res., 10, 4546–4552.
13. Wang, Y., Liu, M., Ni, B., Xie, L. and Zhang, X. (2011) Preparation and Properties of Novel Slow-release PK Agrochemical Formulations Based on Carboxymethylcellulose-Graft-Poly(acrylic acid-co-itaconic acid) Superabsorbents. J. Macromol. Sci., Part A: Pure and Appl. Chem., 48, 806–815.
14. Thomas, V., Yallapu, M. M., Sreedhar, B. and Bajpai, S. K. (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 315, 389–395.
15. Sadeghi, M. and Ghasemi, N. (2012) Synthesis and study on effect of various chemical conditions on the swelling property of collagen-g-poly(AA-co-IA) superabsorbent hydrogel. Ind. J. Sci. Tech. 5, 1879-1884.
16. Selvam, S., Gandhi, R. R., Suresh, J., Gowri, S., Ravikumar, S. and Sundrarajan, M. (2012) Antibacterial effect of novel synthesized sulfated B -cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Inter. J. Pharm. 434, 366-374.
17. Wang, H., Wang, J., Hong, J., Wei, Q., Gao, W., Zhu, Z. (2007) Preparation and characterization of silver nanocomposite textile. J. Coat. Technol. Res. 4, 101-106.
18. El-Rafie, M. H., Mohamed, A. A., Shaheen, Th. I. and Hebeish. A. (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohyd. Polym. 80, 779–782.
19. Cai, J., Zhang, L., Liu, S. L., Liu, Y. T., Xu, X. J., Chen, X. M., et al. (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 41, 9345-9351.
20. Khalil-Abad, M. Sh., Yazdanshenas, M. E. and Nateghi, M. R. (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16, 1147-1157.
21. Cao, Z., and Sun, Y. (2009) Polymeric N-halamine latex emulsions for use in antimicrobial paints. Appl. Mater. Interfaces 1, 494–504.
22. Li, Y., Leung, P., Yao, L., Song, Q.W. and Newton, E. (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62, 58–63.
2. Vigo, T. L. (2001) Antimicrobial Polymers and Fibers: Retrospective and Prospective. In: Bioactive Fibres and Polymers. American Chemical Society. Washington DC, 175-200.
3. Galeano, B., Korff, E. and Nicholson, W. L. (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl. Environ. Microbiol. 69, 4329-4331.
4. Li, Y., Leung, P., Yao, L., Song, Q. W. and Newton, E. (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect., 62, 58–63.
5. Park, S. Y., Chung, J. W., Priestley, R. D. and Kwak, S. Y. (2012) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity, Cellulose 19, 2141–2151.
6. Mohan, Y. M., Premkumar, T., Lee, K. and Geckeler, K. E. (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol. Rapid Commun. 27, 1346–1354.
7. Mohan, Y. M., Lee, K., Premkumar, T. and Geckeler, K. E. (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48, 158–164.
8. Jeon, H. J., Yi, S. C. and Oh, S. G. (2003) Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomaterials, 24, 4921-4928.
9. Sambhy, V. MacBride, M. M., Peterson, B. R. and Sen, A. (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798-9808.
10. Khalil-Abad, M. Sh., and Yazdanshenas, M. E. (2010) Superhydrophobic antibacterial cotton textiles, J. Colloid Interface Sci. 351, 293–298.
11. Xiang, Y. and Chen, D. (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur. Polym. J. 43, 4178–4187.
12. Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Zhang, X., and Wang, Y.F. (2010) Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation. Ind. Eng. Chem. Res., 10, 4546–4552.
13. Wang, Y., Liu, M., Ni, B., Xie, L. and Zhang, X. (2011) Preparation and Properties of Novel Slow-release PK Agrochemical Formulations Based on Carboxymethylcellulose-Graft-Poly(acrylic acid-co-itaconic acid) Superabsorbents. J. Macromol. Sci., Part A: Pure and Appl. Chem., 48, 806–815.
14. Thomas, V., Yallapu, M. M., Sreedhar, B. and Bajpai, S. K. (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 315, 389–395.
15. Sadeghi, M. and Ghasemi, N. (2012) Synthesis and study on effect of various chemical conditions on the swelling property of collagen-g-poly(AA-co-IA) superabsorbent hydrogel. Ind. J. Sci. Tech. 5, 1879-1884.
16. Selvam, S., Gandhi, R. R., Suresh, J., Gowri, S., Ravikumar, S. and Sundrarajan, M. (2012) Antibacterial effect of novel synthesized sulfated B -cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Inter. J. Pharm. 434, 366-374.
17. Wang, H., Wang, J., Hong, J., Wei, Q., Gao, W., Zhu, Z. (2007) Preparation and characterization of silver nanocomposite textile. J. Coat. Technol. Res. 4, 101-106.
18. El-Rafie, M. H., Mohamed, A. A., Shaheen, Th. I. and Hebeish. A. (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohyd. Polym. 80, 779–782.
19. Cai, J., Zhang, L., Liu, S. L., Liu, Y. T., Xu, X. J., Chen, X. M., et al. (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 41, 9345-9351.
20. Khalil-Abad, M. Sh., Yazdanshenas, M. E. and Nateghi, M. R. (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16, 1147-1157.
21. Cao, Z., and Sun, Y. (2009) Polymeric N-halamine latex emulsions for use in antimicrobial paints. Appl. Mater. Interfaces 1, 494–504.
22. Li, Y., Leung, P., Yao, L., Song, Q.W. and Newton, E. (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62, 58–63.