How to cite this paper
Goel, A., Shikha, S., Shivani, S & Tomar, S. (2021). Ir-Ni based mono and bimetallic nanocrystals: synthesis, characterization and effect of cationic, anionic, and non-ionic stabilizers.Current Chemistry Letters, 10(3), 209-220.
Refrences
1 Sharma G., Kumar A., Sharma S., Naushad M., Dwivedi R. P., ALOthman Z. A., and Mola G. T. (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. Sci., 31 (2) 257-269.
2 Tejamaya M., Römer I., Merrifield R. C., and Lead J. R. (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol., 46 (13) 7011-7017.
3 Li Y., Boone E., and El-Sayed M. A. (2002) Size effects of PVP−Pd nanoparticles on the catalytic suzuki reactions in aqueous solution. Langmuir., 18 (12) 4921-4925.
4 Singh S. B. (2016) Iridium chemistry and its catalytic applications: a brief review. Green Chem. Technol. Lett., 2 (4) 206-210.
5 Liu Z., andSadler P. J. (2014) Organoiridium complexes: anticancer agents and catalysts. Acc. Chem. Res., 47 (4) 1174-1185.
6 Stowell C. A., and Korgel B. A. (2005) Iridium nanocrystals synthesis and surface coating-dependent catalytic activity. Nano Lett., 5 (7) 1203-1207.
7 Islam F., Hossain M. A., Shah N. M., Barua H. T., Kabir M. A., Khan M. J., and Mullick R. (2015) Synthesis, characterization, and antimicrobial activity studies of Ni(II) complex with pyridine as a ligand. J. Chem., 2015.
8 Xue H. A. N., Wei C. H. U., Ping N. I., Shi-zhong LUO, and Tao Z..(2007) Promoting effects of iridium on nickel based catalyst in ammonia decomposition. J. Fuel Chem. Technol., 35 (6) 691-695.
9 Kalwar N. H., Sirajuddin., Soomro R. A., Sherazi S. T. H., Hallam K. R., and Khaskheli A. R. (2014) Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. Int. J. Met., 2014.
10 Egeberg A., Dietrich C., Kind C., Popescu R., .,Gerthsen D., Behrens S., and Feldmann C. (2017) Bimetallic NiIr4 and NiOs4 alloy nanoparticles and their catalytic performance in hydrogenation reactions. Chem. Cat. Chem., 9 (18) 3534-3543.
11 Garcia-Gutierrez D. I., Gutierrez-Wing C. E., Giovanetti L., Ramallo-Lopez J. M., Requejo F. G., and Jose-Yacaman M. (2005) Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles. J. Phys. Chem. B., 109 (9) 3813-3821.
12 An K., and Somorjai G. A. (2015) Nanocatalyst I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett., 145 (1) 233-248.
13 Kim T., Kabayashi K., and Nagai M. (2007) Preparation and characterization of platinum-ruthenium bimetallic nanoparticles using reverse microemulsions for fuel cell catalyst. J. Oleo Sci., 56 (10) 553-562.
14 Singh H. P., Gupta N., Sharma S. K., and Sharma R. K. (2013) Synthesis of bimetallic Pt-Cu nanoparticles and their application in the reduction of rhodamine B. Colloids Surf. A: Physicochem. Eng. Asp., 416 43-50.
15 Duan M., Jiang L., Zeng G., Wang D., Tang W., Liang J., Wang H., He D., Liu Z., and Tang L. (2020) Bimetallic nanoparticles/metal-organic frameworks: synthesis, applications and challenges. Appl. Mater. Today., 19 100564.
16 Ashraf M. A., Peng W., Zare Y., and Rhee K. Y. (2018) Effects of size and aggregation/ agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett., 13 (1) 214.
17 Wang W., Gu B., and Liang L. (2004) Effect of surfactants on the formation, morphology, and surface property of synthesized SiO2 nanoparticles. J.Disper. Sci. Technol., 25 (5) 593-601.
18 Al-Thabaiti S.A., Malik M. A., Al-Youbi A. A., Khan Z., and Hussain J. I. (2013) Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci., 8 (1) 204-218.
19 Morsy S. M. (2014) Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. App. Sci., 3 (5) 237-260.
20 Simoes M., Pereira M. O., and Vieira M. J. (2005) Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res., 39 (2-3) 478-486.
21 Tiwari S., Mall C., and Solanki P. P. (2018) Surfactant and its applications: a review. Int. J. Eng. Res. Appl., 8 (9) 61-66.
22 Arslan A., Topkaya E., Bingol D., and Veli S. (2018) Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach. Sustain. Environ. Res., 28 (2) 65-71.
23 Thottoli A. K., and Unni A. K. A. (2013) Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. nanostruct. Chem., 3 (1) 56.
24 Al-Harbi L. M., Kosa S. A., Baloch M. K., Bhatti Q. A., and El-Mossalamy E. S. E. B. H. (2016) Adsorption of polyvinylpyrrolidone over the silica surface: as affected by pretreatment of adsorbent and molar mass of polymer adsorbate. Int. J. Polym. Sci., 2016.
25 Shukla M., and Sinha I. (2018) Catalytic Aactivation of PVP-stabilized gold/silver cluster on p-nitrophenol reduction: a DFT. Density Functional Calculations –Recent Progresses of Theory and Application, 153.
26 Yue H., Zhao Y., Ma X., and Gong J. (2012) Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev., 41 (11) 4218-4244.
27 Dong Y. Y., Liu S., Meng L. Y., Wang B., Bian J., and Ma M. G. (2016) An efficient ultrasonic-assisted synthesis of Ag@Agcl@cellulose composites in ethylene glycol solvent. Mater. Lett., 165 210-213.
28 Goel A., and Bhatt R. (2012) Synthesis and characterization of nanoscale colloidal iridium metal clusters by chemical reduction method using monohydric and dihydric alcohols. Int. J. Chem. Appl.,4 (2) 111-121.
29 Sujata J., Asokan S., and Kumar S. R. (2017) Antioxidant effect and phytochemical analysis of chloroform extract of cassis fistula using FT-IR, HPLC and GC-MS analysis. Int. J. Pharm. Sci. Rev. Res., 46 (1) 129-133.
30 Goel A., and Lasyal R. (2018) Facile synthesis of IrO2 nanoclusters and their application as catalysts in the degradation of azo dyes. Turk. J. Chem., 42 941 – 957.
31 Goel A.,and Sharma S.(2012) Colloidal iridium nanoparticles in the oxidation of hexacyanoferrate(III) in alkaline medium - a kinetic study. J. Indian Chem. Soc., 89 (4) 507-512.
32 Goel A., and Chaudhary M. (2018) Highly dispersed PVP-supported Ir-Ni bimetallic nanoparticles as high performance catalyst for degradation of metanil yellow. Bull. Mater. Sci., 41 (3) 81.
33 Roy K., Sarkar C. K., and Ghosh C. K. (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (saccharomyces cerevisiae) extract. Appl. Nanosci., 5 953-959.
34 Saffari J., Mir N., Ghanbari D., Khandan-Barani K., Hassanabadi A., and Hosseini-Tabatabaei M. R. (2015) Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photocatalytic degradation of various organic dyes. J.Mater. Sci: Mater. Electron., 26 (12) 9591-9599.
35 Mahmoud S. A., Al-Shomar S. M., and Akl A. A. (2010) Electrical characteristics and nanocrystalline formation of sprayed iridium oxide thin films. Adv. Condens. Matter Phys., 2010.
36 Kundu S., and Liang H. (2011) Shape-selective formation and characterization of catalytically active iridium nanoparticle. J.Colloid Interface Sci.,354 (2) 597-606.
37 Darabdhara G., Das M. R., Amin M. A., Mersal G. A. M., Mostafa N. Y., Abd El-Rehim S. S., Szunerits S., and Boukherroub R. (2018) Au-Ni Alloy nanoparticles supported on reduced grapheme oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. Int. J. Hydrog. Energy., 43 (3) 1424-1438.
38 Chiang I. C., Chen Y. T., and Chen D. H. (2009) Synthesis of NiAu colloidal nanocrystals with kinetically tunable properties. J. Alloys Compd.,468 (1-2) 237-245.
39 Antoinette M. M., and Israel S. (2017) Synthesis and characterization of Sm2O3 nanoparticles using combustion method. Int. Res. J. Eng. Tech.,4 276-9.
40 Redon R., Ramirez-Crescencio F., and Fernandez-Osorio A. L. (2011) Solventless synthesis of iridium(0) nanoparticles. J.Nanopart. Res., 13 (11) 5959–5965.
41 Larios E., Molina Z., Maldonado A., and Tanori J. (2012) Synthesis and characterization of bimetallic copper gold nanoparticles. J. Disper.Sci.Technol.,33 (5) 719-723.
42 Mishra M., Muthuprasanna P., Prabha K. S., Rani P. S., Satish I. A., Chandiran I. S., Arunachalam G., and Shalini S. (2009) Basics and potential applications of surfactants-areview. Int. J. Pharmtech. Res., 1 (4) 1354-1365.
43 Heinz H., Pramanik C., Heinz O., Ding Y., Mishra R. K., Marchon D., Flatt R. J., Estrela-Lopis I., LIop J., Moya S., and Ziolo R. F. (2017) Nanoparticle decoration with surfactants: molecular interactions assembly and applications. Surf. Sci. Rep., 72 (1) 1-58.
44 Malina D., Sobczak-Kupiec A., Wzorek Z., and Kowalski Z. (2012) Silver nanoparticles synthesis with different concentration of polyvinylpyrrolidone. Dig. J. Nanomater.Bios.,7 (4) 1527-1534.
2 Tejamaya M., Römer I., Merrifield R. C., and Lead J. R. (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol., 46 (13) 7011-7017.
3 Li Y., Boone E., and El-Sayed M. A. (2002) Size effects of PVP−Pd nanoparticles on the catalytic suzuki reactions in aqueous solution. Langmuir., 18 (12) 4921-4925.
4 Singh S. B. (2016) Iridium chemistry and its catalytic applications: a brief review. Green Chem. Technol. Lett., 2 (4) 206-210.
5 Liu Z., andSadler P. J. (2014) Organoiridium complexes: anticancer agents and catalysts. Acc. Chem. Res., 47 (4) 1174-1185.
6 Stowell C. A., and Korgel B. A. (2005) Iridium nanocrystals synthesis and surface coating-dependent catalytic activity. Nano Lett., 5 (7) 1203-1207.
7 Islam F., Hossain M. A., Shah N. M., Barua H. T., Kabir M. A., Khan M. J., and Mullick R. (2015) Synthesis, characterization, and antimicrobial activity studies of Ni(II) complex with pyridine as a ligand. J. Chem., 2015.
8 Xue H. A. N., Wei C. H. U., Ping N. I., Shi-zhong LUO, and Tao Z..(2007) Promoting effects of iridium on nickel based catalyst in ammonia decomposition. J. Fuel Chem. Technol., 35 (6) 691-695.
9 Kalwar N. H., Sirajuddin., Soomro R. A., Sherazi S. T. H., Hallam K. R., and Khaskheli A. R. (2014) Synthesis and characterization of highly efficient nickel nanocatalysts and their use in degradation of organic dyes. Int. J. Met., 2014.
10 Egeberg A., Dietrich C., Kind C., Popescu R., .,Gerthsen D., Behrens S., and Feldmann C. (2017) Bimetallic NiIr4 and NiOs4 alloy nanoparticles and their catalytic performance in hydrogenation reactions. Chem. Cat. Chem., 9 (18) 3534-3543.
11 Garcia-Gutierrez D. I., Gutierrez-Wing C. E., Giovanetti L., Ramallo-Lopez J. M., Requejo F. G., and Jose-Yacaman M. (2005) Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles. J. Phys. Chem. B., 109 (9) 3813-3821.
12 An K., and Somorjai G. A. (2015) Nanocatalyst I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett., 145 (1) 233-248.
13 Kim T., Kabayashi K., and Nagai M. (2007) Preparation and characterization of platinum-ruthenium bimetallic nanoparticles using reverse microemulsions for fuel cell catalyst. J. Oleo Sci., 56 (10) 553-562.
14 Singh H. P., Gupta N., Sharma S. K., and Sharma R. K. (2013) Synthesis of bimetallic Pt-Cu nanoparticles and their application in the reduction of rhodamine B. Colloids Surf. A: Physicochem. Eng. Asp., 416 43-50.
15 Duan M., Jiang L., Zeng G., Wang D., Tang W., Liang J., Wang H., He D., Liu Z., and Tang L. (2020) Bimetallic nanoparticles/metal-organic frameworks: synthesis, applications and challenges. Appl. Mater. Today., 19 100564.
16 Ashraf M. A., Peng W., Zare Y., and Rhee K. Y. (2018) Effects of size and aggregation/ agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett., 13 (1) 214.
17 Wang W., Gu B., and Liang L. (2004) Effect of surfactants on the formation, morphology, and surface property of synthesized SiO2 nanoparticles. J.Disper. Sci. Technol., 25 (5) 593-601.
18 Al-Thabaiti S.A., Malik M. A., Al-Youbi A. A., Khan Z., and Hussain J. I. (2013) Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci., 8 (1) 204-218.
19 Morsy S. M. (2014) Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. App. Sci., 3 (5) 237-260.
20 Simoes M., Pereira M. O., and Vieira M. J. (2005) Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res., 39 (2-3) 478-486.
21 Tiwari S., Mall C., and Solanki P. P. (2018) Surfactant and its applications: a review. Int. J. Eng. Res. Appl., 8 (9) 61-66.
22 Arslan A., Topkaya E., Bingol D., and Veli S. (2018) Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach. Sustain. Environ. Res., 28 (2) 65-71.
23 Thottoli A. K., and Unni A. K. A. (2013) Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. nanostruct. Chem., 3 (1) 56.
24 Al-Harbi L. M., Kosa S. A., Baloch M. K., Bhatti Q. A., and El-Mossalamy E. S. E. B. H. (2016) Adsorption of polyvinylpyrrolidone over the silica surface: as affected by pretreatment of adsorbent and molar mass of polymer adsorbate. Int. J. Polym. Sci., 2016.
25 Shukla M., and Sinha I. (2018) Catalytic Aactivation of PVP-stabilized gold/silver cluster on p-nitrophenol reduction: a DFT. Density Functional Calculations –Recent Progresses of Theory and Application, 153.
26 Yue H., Zhao Y., Ma X., and Gong J. (2012) Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev., 41 (11) 4218-4244.
27 Dong Y. Y., Liu S., Meng L. Y., Wang B., Bian J., and Ma M. G. (2016) An efficient ultrasonic-assisted synthesis of Ag@Agcl@cellulose composites in ethylene glycol solvent. Mater. Lett., 165 210-213.
28 Goel A., and Bhatt R. (2012) Synthesis and characterization of nanoscale colloidal iridium metal clusters by chemical reduction method using monohydric and dihydric alcohols. Int. J. Chem. Appl.,4 (2) 111-121.
29 Sujata J., Asokan S., and Kumar S. R. (2017) Antioxidant effect and phytochemical analysis of chloroform extract of cassis fistula using FT-IR, HPLC and GC-MS analysis. Int. J. Pharm. Sci. Rev. Res., 46 (1) 129-133.
30 Goel A., and Lasyal R. (2018) Facile synthesis of IrO2 nanoclusters and their application as catalysts in the degradation of azo dyes. Turk. J. Chem., 42 941 – 957.
31 Goel A.,and Sharma S.(2012) Colloidal iridium nanoparticles in the oxidation of hexacyanoferrate(III) in alkaline medium - a kinetic study. J. Indian Chem. Soc., 89 (4) 507-512.
32 Goel A., and Chaudhary M. (2018) Highly dispersed PVP-supported Ir-Ni bimetallic nanoparticles as high performance catalyst for degradation of metanil yellow. Bull. Mater. Sci., 41 (3) 81.
33 Roy K., Sarkar C. K., and Ghosh C. K. (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (saccharomyces cerevisiae) extract. Appl. Nanosci., 5 953-959.
34 Saffari J., Mir N., Ghanbari D., Khandan-Barani K., Hassanabadi A., and Hosseini-Tabatabaei M. R. (2015) Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photocatalytic degradation of various organic dyes. J.Mater. Sci: Mater. Electron., 26 (12) 9591-9599.
35 Mahmoud S. A., Al-Shomar S. M., and Akl A. A. (2010) Electrical characteristics and nanocrystalline formation of sprayed iridium oxide thin films. Adv. Condens. Matter Phys., 2010.
36 Kundu S., and Liang H. (2011) Shape-selective formation and characterization of catalytically active iridium nanoparticle. J.Colloid Interface Sci.,354 (2) 597-606.
37 Darabdhara G., Das M. R., Amin M. A., Mersal G. A. M., Mostafa N. Y., Abd El-Rehim S. S., Szunerits S., and Boukherroub R. (2018) Au-Ni Alloy nanoparticles supported on reduced grapheme oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. Int. J. Hydrog. Energy., 43 (3) 1424-1438.
38 Chiang I. C., Chen Y. T., and Chen D. H. (2009) Synthesis of NiAu colloidal nanocrystals with kinetically tunable properties. J. Alloys Compd.,468 (1-2) 237-245.
39 Antoinette M. M., and Israel S. (2017) Synthesis and characterization of Sm2O3 nanoparticles using combustion method. Int. Res. J. Eng. Tech.,4 276-9.
40 Redon R., Ramirez-Crescencio F., and Fernandez-Osorio A. L. (2011) Solventless synthesis of iridium(0) nanoparticles. J.Nanopart. Res., 13 (11) 5959–5965.
41 Larios E., Molina Z., Maldonado A., and Tanori J. (2012) Synthesis and characterization of bimetallic copper gold nanoparticles. J. Disper.Sci.Technol.,33 (5) 719-723.
42 Mishra M., Muthuprasanna P., Prabha K. S., Rani P. S., Satish I. A., Chandiran I. S., Arunachalam G., and Shalini S. (2009) Basics and potential applications of surfactants-areview. Int. J. Pharmtech. Res., 1 (4) 1354-1365.
43 Heinz H., Pramanik C., Heinz O., Ding Y., Mishra R. K., Marchon D., Flatt R. J., Estrela-Lopis I., LIop J., Moya S., and Ziolo R. F. (2017) Nanoparticle decoration with surfactants: molecular interactions assembly and applications. Surf. Sci. Rep., 72 (1) 1-58.
44 Malina D., Sobczak-Kupiec A., Wzorek Z., and Kowalski Z. (2012) Silver nanoparticles synthesis with different concentration of polyvinylpyrrolidone. Dig. J. Nanomater.Bios.,7 (4) 1527-1534.