How to cite this paper
Giri, S., Singh, A & Kumar, K. (2024). An overview of the anticancer activity of some mononuclear and polynuclear platinum(II) complexes.Current Chemistry Letters, 13(3), 611-632.
Refrences
1. Williams, M.J., Sottoriva, A., Graham, T.A. (2019) Measuring Clonal Evolution in Cancer with Genomics. Annu. Rev. Genom. Hum. Genet., 20, 309–329. https://doi.org/10.1146/annurev-genom-083117-021712
2. Han, S., Wang, W., Wang, S., Yang, T., Zhang, G., Wang, D., Ju, R., Lu, Y., Wang, H., Wang, L. (2021) Tumor Microenvironment Remodeling and Tumor Therapy Based on M2-like Tumor Associated Macrophage-Targeting Nano-Complexes. Theranostics, 11(6), 2892–2916. https://doi.org/10.7150/thno.50928
3. Yiqing, G.U., Zheng, Q.I., Guifang, F., Runping, L. (2022) Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int. J. Mol. Sci., 23, 11042. https://doi.org/10.3390/ijms231911042
4. Barnard, C.F.J. (1989) Platinum anti-cancer agents twenty years of continuing development. Platinum Metals Rev., 33, 162–167. Corpus ID: 40270218
5. Lewis, R. (1999) From basic research to cancer drug: the story of cisplatin. The Scientist, 13[14]:11. Corpus ID: 89600680
6. Wilson, J.J., Lippard, S.J. (2014) Synthetic methods for the preparation of platinum anticancer complexes. Chemical Reviews, 114, 4470–4495. https://doi.org/10.1021/cr4004314
7. Ayodele, T.O., Peter, A.A., Johannes, Z.M., Opeoluwa, O. (2019) Developments in Platinum-Group Metals as Dual Antibacterial and Anticancer Agents. J. Chem., 18, Article ID 5459461. https://doi.org/10.1155/2019/5459461
8. Matiichuk, Y., Drapak, I., Darmograi, N., Bartoshyk, N., Drapak, Y., Matiychuk, V. (2024) Synthesis and biological activity of rhodanine-furan conjugates: A review. Curr. Chem. Lett., 13, 287–302. https://doi.org/10.5267/j.ccl.2023.12.003
9. Lelyukh, M., Zhukrovska, M., Komarenska, Z., Flud, V., Harkov, S. (2023) Synthetic approaches, modification ability and biological activity of 1,3,4-thiadiazole based [5+5] annelated heterosystems: Mini-review. Curr. Chem. Lett., 12, 769–780. https://doi.org/10.5267/j.ccl.2023.4.004
10. Sadowski, M., Kula, K. (2024) Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett., 13, 15–30. https://doi.org/10.5267/j.ccl.2023.9.003
11. Marques, M.P.A. (2015) Molecular view of cisplatin’s mode of action: interplay with DNA bases and acquired resistance. Phys. Chem. Chem. Phys., 17, 5155–5171. https://doi.org/10.1039/c4cp05183a
12. Siddik, Z.H. (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265–7279. https://doi.org/10.1038/sj.onc.1206933
13. Dasari, S., Tchounwou, P.B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
14. Florea, A.M., Busselberg, D. (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3, 1351–1371. https://doi.org/10.3390/cancers3011351
15. Komeda, S. (2011) Unique platinum–DNA interactions may lead to more effective platinum-based antitumor drugs. Metallomics, 3, 650. https://doi.org/10.1039/c1mt00012h
16. Martin, V., Maria, P.M.M., Isabel, M.P.L.V.O.F, Helder, M.F., Carmen, D. (2019) Anticancer activity of palladium-based complexes against triplenegative breast cancer. Drug Discov. Today, 24(4), 1044-1058. https://doi.org/10.1016/j.drudis.2019.02.012
17. Szefler, B., Czelen, P. (2023) Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review. Int. J. Mol. Sci., 24, 1548. https://doi.org/ 10.3390/ijms24021548
18. Coffetti, G., Moraschi, M., Facchetti, G., Rimoldi, I. (2023) The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules, 28, 3407. https:// doi.org/10.3390/molecules28083407
19. Jin, S., Guo, Y., Guo, Z., Wang, X. (2021) Monofunctional Platinum(II) Anticancer Agents. Pharmaceuticals, 14, 133. https://doi.org/10.3390/ph14020133
20. Nile, T.A., Smith, C.A. (1979) of novel platinum complexes showing potential as anti-cancer drugs. J. Inorg. nucl. chem. Lett., 15, 183-185.
21. Ruiz, J., Cutillas, N., Vicente, C., Villa, M.D, Lopez, G., Julia, L., Aviles, F.X., Moreno, V., Bautista, D. (2005) New Palladium(II) and Platinum(II) Complexes with the Model Nucleobase 1-Methylcytosine: Antitumor Activity and Interactions with DNA. Inorg. Chem., 44(21), 7365-7376. https://doi.org/10.1021/ic0502372
22. Ibrahim, A.A., Kareem, M.M., Al-Noor, T.H., Muhimeed, T.A., AlObaid, A.A., Albukhaty, S., Sulaiman, G.M., Jabir, M., Taqi, Z.J., Sahib, U.I. (2021) Pt(II)-Thiocarbohydrazone Complex as Cytotoxic Agent and Apoptosis Inducer in Caov-3 and HT-29 Cells through the P53 and Caspase-Pathways. Pharmaceuticals, 14(6), 509. https://doi.org/10.3390/ph14060509
23. Marzano, C., Trevisan, A., Giovagnini, L., Fregona, D. (2002) Synthesis of a new platinum(II) complex: anticancer activity and nephrotoxicity in vitro. Toxicol. In Vitro, 16(4), 413-419. https://doi.org/10.1016/s0887-2333(02)00022-x
24. Jamshidi, M., Yousefi, R., Nabavizadeh, S.M., Rashidi, M., Haghighi, M.G., Niazi, A., Movahedi, A.A.M. (2014) Anticancer activity and DNA-binding properties of novel cationic Pt(II) complexes. Int. J. Biol. Macromol., 66, 86-96. https://doi.org/10.1016/j.ijbiomac.2014.01.057
25. Wilson, J.J., Lippard, S.J. (2012) In vitro anticancer activity of cis-diammineplatinum(II) complexes with β-diketonate leaving group ligands. J. Med. Chem., 55, 5326–5336. https://doi.org/10.1021/jm3002857
26. Mbugua, S.N., Sibuyi, N.R.S., Njenga, L.W., Odhiambo, R.A., Wandiga, S.O., Meyer, M., Lalancette, R.A., Onani, M.O. (2020) New Palladium(II) and Platinum(II) Complexes Based on Pyrrole Schiff Bases, Synthesis, Characterization, X ray Structure, and Anticancer Activity. ACS Omega, 5(25), 14942-14954. https://doi.org/10.1021/acsomega.0c00360
27. Niu ,L., Ren, G., Hou, T., Shen, X., Zhu, D. (2021) Synthesis, structure and anticancer activity of three platinum(II) complexes with 2-phenylpyridine derivatives. Inorg. Chem. Commun., 130, 108737. https://doi.org/10.1016/j.inoche.2021.108737
28. Nieto, D., Vadillo, A.M.G., Bruna, S., Pastor, C.J., Luci, C.R., Leon, L.G., Padron, J.M., Ranningera, C.N., Cuadrado, I. (2012) Heterometallic platinum(II) compounds with β-aminoethylferrocenes: synthesis, electrochemical behavior and anticancer activity. Dalton Trans., 41, 432. https://doi.org/10.1039/c1dt11358e
29. Mitra, K., Basu, U., Khan, I., Maity, B., Kondaiah, P., (2014) Chakravarty, P. Remarkable anticancer activity of ferrocenyl-terpyridine platinum(II) complexes in visible light with low dark toxicity. Dalton Trans., 43(2), 751-763. https://doi.org/10.1039/c3dt51922h
30. Zivkovic, M.D., Kljun, J., Tomic, T.I., Pavic, A., Veselinovic, A., Manojlovic, D.D., Runic, J.N., Turel, I. (2018) A new class of platinum(II) complexes with phosphine ligand pta which show potent anticancer activity. Inorg. Chem. Front., 5, 39-53. https://doi.org/10.1039/C7QI00299H
31. Yu, Y., Lou, L.G., Liu, W.P., Zhu, H.J., Ye, Q.S., Chen, X.Z., Gao, W.G., Hou, S.Q. (2008) Synthesis and anticancer activity of lipophilic platinum(II) complexes of 3,5-diisopropylsalicylate. Eur. J. Med. Chem., 43, 1438-1443. https://doi.org/10.1016/j.ejmech.2007.09.006
32. Icsel, C., Yilmaz, V.T., Cevatemre, B., Aygun, M., Ulukaya, E. (2019) Structures and anticancer activity of chlorido platinum(II) saccharinate complexes with mono- and dialkylphenylphosphines. J. Inorg. Biochem., 195, 39-50. https://doi.org/10.1016/j.jinorgbio.2019.03.008
33. Yousefi, R., Aghevlian, S., Mokhtari, F., Samouei, H., Rashidi, M., Nabavizadeh, S.M., Tavaf, Z. Pouryasin, Z., Niazi, A., Faghihi, R., Papari, M.M. (2012) The Anticancer Activity and HSA Binding Properties of the Structurally Related Platinum (II) Complexes, Appl. Biochem. Biotechnol., 167(4), 861-872. https://doi.org/10.1007/s12010-012-9733-5
34. Zhang, J.J., Che, C.M., Ott, I. (2015) Caffeine derived platinum(II) N-heterocyclic carbene complexes with multiple anti-cancer activities J. Organomet. Chem., 782, 37-41. https://doi.org/10.1016/j.jorganchem.2014.10.041
35. Rimoldi, I., Facchetti, G., Lucchini, G., Castiglioni, E., Marchiano, S. Ferri, N. (2017) In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety. Bioorg. Med. Chem., 25(6), 1907-1913. https://doi.org/10.1016/j.bmc.2017.02.010
36. Kim, Y.S., Song, R., Kimb, D.H., Junc, M.J., Sohna, Y.S. (2003) Synthesis, Biodistribution and Antitumor Activity of Hematoporphyrin–Platinum(II) Conjugates. Bioorg. Med. Chem., 11, 1753–1760. https://doi.org/10.1016/S0968-0896(03)00029-4
37. Safieh, K.A.A., Surrah, A.S.A., Tabba, H.D., AlMasri, H.A., Bawadi, R.M., Boudjelal, F.M., Tahtamouni, L.H. (2016) Novel Palladium(II) and Platinum(II) Complexes with a Fluoropiperazinyl Based Ligand Exhibiting High Cytotoxicity and Anticancer Activity In Vitro, Journal of Chemistry, Article ID 7508724, 7. https://doi.org/10.1155/2016/7508724
38. Kushev, D., Gorneva, G., Taxirov, S., Spassovska, N., Grancharov, K. Synthesis, (1999) Cytotoxicity and Antitumor Activity of Platinum(II) Complexes of Cyclopentanecarboxylic Acid Hydrazide. Biol. Chem., 380(11), 1287-1294. https://doi.org/10.1515/BC.1999.164
39. Dogan, U., Ozcan, O., Alaca, G., Arı, A., Gunnaz, S., Yalcın, H.T., Sahin, O., Irisli, S. (2021) Novel Benzimidazole- Platinum(II) Complexes: Synthesis, Characterization, Antimicrobial and Anticancer Activity. J. Mol. Struct., 1229, 129785. https://doi.org/10.1016/j.molstruc.2020.129785
40. Mavroidi, B., Sagnou, M., Stamatakis, K., Petsotas, M.P, Pelecanou, M., Methenitis, C. (2016) Palladium(II) and platinum(II) complexes of derivatives of 2-(4' aminophenyl)benzothiazole as potential anticancer agents. Inorganica Chim. Acta, 444, 63-75. http://dx.doi.org/10.1016/j.ica.2016.01.012
41. Rubino, S., Pibiri, I., Costantino, C., Buscemi, S., Girasolo, M.A., Attanzio, A., Tesoriere, L. (2016) Synthesis of platinum complexes with 2-(5-perfluoroalkyl-1,2,4-oxadiazol-3yl)-pyridine and 2-(3-perfluoroalkyl-1-methyl-1,2,4-triazole-5yl)-pyridine ligands and their in vitro antitumor activity. J. Inorg. Biochem., 155, 92-100. https://doi.org/10.1016/j.jinorgbio.2015.11.020
42. Muller, C.M.A., Babak, M.V., Kubanik, M., Hanif, M., Jamieson, S.M.F., Hartinger, C.G., Wright, L.J. (2017) Reprint of Pt(II) pyridinium amidate (PYA) complexes: Preparation and in vitro anticancer activity studies. Inorganica Chim. Acta, 454, 247-253. https://doi.org/10.1016/j.ica.2016.09.045
43. Savic, A., Filipovic, L., Arandelovic, S., Dojcinovic, B., Radulovic, S., Sabo, T.J., Sipka, S.G. (2014) Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes. Eur. J. Med. Chem., 82, 372-384. https://doi.org/10.1016/j.ejmech.2014.05.060
44. Shahraki, S., Torshizi, H.M., Heydari, A., Ghahghaei, A., Divsalar, A., Saboury, A., Ghaemi, H., Doostkami, M., Zareian, S. (2015) Platinum(II) and Palladium(II) complexes with 1,10-phenanthroline and pyrrolidinedithiocarbamato ligands: synthesis, DNA-binding and anti-tumor activity in leukemia K562 cell lines. Iran. J. Sci. technol., 39A2, 187-198. http://ijsts.shirazu.ac.ir
45. Demertzi, D.K., Papageorgiou, A., Papathanasis, L., Alexandratos, A., Dalezis, P., Miller, J.R., Demertzis, M.A. (2009) In vitro and in vivo antitumor activity of platinum(II) complexes with thiosemicarbazones derived from 2-formyl and 2-acetyl pyridine and containing ring incorporated at N(4)-position: Synthesis, spectroscopic study and crystal structure of platinum(II) complexes with thiosemicarbazones, potential anticancer agents. Eur. J. Med. Chem., 44(3), 1296-1302. https://doi.org/10.1016/j.ejmech.2008.08.007
46. Liu, W., Chen, X., Xie, M., Lou, L., Ye, Q., Yu, Y. Hou, S. (2008) Synthesis and anticancer activity of [2-hydroxy-1,3-diaminopropane-Kappa 2N, N1] platinum(II) complexes. J. Inorg. Biochem., 102, 1942–1946. https://doi.org/10.1016/j.jinorgbio.2008.07.003
47. Starha, P., Travnicek, Z., Popa, I., Dvorak, Z. (2014) Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II) Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands. Molecules, 19(8), 10832-10844. https://doi.org/10.3390/molecules190810832
48. Fuks, L., Anuszewska, E., Kruszewska, H., Krowczynski, A., Dudek, J., Sosnowska, N.S. (2010) Platinum(II) complexes with thiourea derivatives containing oxygen, sulfur or selenium in a heterocyclic ring: computational studies and cytotoxic properties. Transit. Met. Chem., 35, 639–647. https://doi.org/10.1007/s11243-010-9375-9
49. Kushev, D., Naydenova, E., Popova, J., Maneva, L., Grancharov, K., Spassovska, N. (2003) Synthesis and Cytotoxicity of Platinum(II) Complexes of 3-Aminocyclopentanespiro-5-hydantoin and 3-Aminocycloheptanespiro-5-hydantoin. Z. Naturforsch., 58c, 103-108. https://doi.org/10.1515/znc-2003-1-218
50. Zou, J., Dou, P.Y., Wang, k. (1997) Synthesis, Antitumor Activity and Acute Toxicity of Diammine/Diaminocyclohexane Platinum(II) Complexes with Oxygen-Ligating Leaving Group. J. Inorg. Biochem., 65, 145-149. https://doi.org/10.1016/S0162-0134(96)00121-3
51. Qin, Q.P., Wang, S.L., Tan, M.X., Luo, D.M., Wang, Z.F., Wei, QM., Wu, X.Y., Zou, B.Q., Liu, Y.C. (2019) 3-(1H-benzoimidazol-2-yl)-chromen-2-ylideneamine platinum(II) and ruthenium(II) complexes exert their high in vitro antitumor activity by inducing S-phase arrest and disrupting mitochondrial functions in SK-OV-3/DDP tumor cells. Polyhedron, 157, 219-224. https://doi.org/10.1016/j.poly.2018.10.012
52. Rahman, F., Ali, A., Khan, I., Guo, R., Chen, L., Wang, H., Li, Z.T., Lin, Y., Zhang, D. (2015) Synthesis and characterization of trans-Pt(II)(salicylaldimine) (pyridine/pyridine-4-carbinol)Cl complexes: In vivo inhibition of E. coli growth and in vitro anticancer activities. Polyhedron, 100, 264-270. https://doi.org/10.1016/j.poly.2015.08.034
53. Amir, M.K., Rehman, Z.U., Hayat, F., Khan, S.Z., Hogarth, G., Kondratyuk, T., Pezzuto, J.M., Tahir, M.N. (2016) Monofunctional platinum(II) dithiocarbamate complexes: Synthesis, characterization and anticancer activity. RSC Advances, 6, 110517-110524. https://doi.org/10.1039/C6RA19469A
54. Rubino, S., Portanova, P., Girasolo, A., Calvaruso, G., Orecchio, S., Stocco, G.C. (2009) Synthetic, structural and biochemical studies of polynuclear platinum(II) complexes with heterocyclic ligands. Eur. J. Med. Chem., 44, 1041-1048. https://doi.org/10.1016/j.ejmech.2008.06.023
55. Jinchao, Z., Yuqiu, G., Xiaoming, Z., Mengsu, Y., Jingrong, C. (2006) Synthesis and antitumor activity of iodo-bridged binuclear platinum complex. Chin. Sci. Bull., 51(8), 911-917. https://doi.org/10.1007/s11434-006-0911-0
56. Komeda, S., Lutz, M., Spek, A.L., Chikuma, M., Reedijk, J. (2000) New Antitumor-Active Azole-Bridged Dinuclear Platinum(II) Complexes: Synthesis, Characterization, Crystal Structures, and Cytotoxic Studies. Inorg. Chem., 39(19), 4230-4236. https://doi.org/10.1021/ic000273v
57. Ahmed, A.A., Mohamed, S.K., Abdel-Raheem, S.A.A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 (4), 359-370. https://doi.org/10.5267/j.ccl.2022.6.001
58. Shamsan, A.Q.S., Fouad, M.R., Yacoob, W.A.R.M., Abdul-Malik, M.A., Abdel-Raheem, S.A.A. (2023) Performance of a variety of treatment processes to purify wastewater in the food industry. Curr. Chem. Lett., 12 (2), 431–438. https://doi.org/10.5267/j.ccl.2022.11.003
59. Mohamed, S.K., Mague, J.T., Akkurt, M., Alfayomy, A.M., Seri, S.M.A., Abdel-Raheem, S.A.A., UI-Malil, M.A.A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a] pyrimidine-6-carboxylate. Acta Cryst., 78 (8), 846-850. https://doi.org/10.1107/S205698902200603X