How to cite this paper
Nandaniya, B., Das, S & Jani, D. (2023). New thiosemicarbazone derivatives and their Mn(II), Ni(II), Cu(II) and Zn(II) complexes: Synthesis, characterization and in-vitro biological screening.Current Chemistry Letters, 12(2), 289-296.
Refrences
1. Shekaari H., Kazempour A. and Khoshalhan M. (2015) Schiff base ligands and their transition metal complexes in the mixtures of ionic liquid + organic solvent: a thermodynamic study. Phys. Chem. Chem. Phys., 17(3) 2179-2191.
2. Musie G., Wei M., Subramaniam B., Busch D. H. (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord. Chem. Rev., 789 219-221.
3. Mangamamba T., Ganorkar M. C., Swarnabala G. (2014) Characterization of Complexes Synthesized Using Schiff Base Ligands and Their Screening for Toxicity Two Fungal and One Bacterial Species on Rice Pathogens. Int. J. Inorg. Chem., 1-22.
4. Abozeed A., et al. (2022) Characterization and optical behavior of a new indole Schiff base using experimental data and TD-DFT/DMOl3 computations. Optical Materials, 131 112594.
5. Fouad M. R., Shamsan A. Q. S. and Abdel-Raheem S. A. A. (2023) Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques. Curr. Chem. Lett., 12 185–192.
6. Pandey R. K., et al. (2022) Metaheuristic algorithm integrated neural networks for well-test analyses of petroleum reservoirs. Scientific Reports, 12.1 1-16.
7. Ali Hazim M., et al. (2022) Catalytic and Multicomponent Reactions for Green Synthesis of Some Pyrazolone Compounds and Evaluation as Antimicrobial Agents. ACS omega, 7.33 29142-29152.
8. Tolba M. S., et al. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14.4 334-345.
9. Hamed M. M., et al. (2023) Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents. J. Mol. Struct., 1273 134371.
10. Mohamed G. G., Omar M., Hindy A. M. (2006) Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity. Turk J Chem., 30 361-382.
11. Diedrich B., Rigbolt K. T., R€oring M., Herr R., Kaeser-Pebernard S., Gretzmeier C. (2017) Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J., 36 646-663.
12. Pandeya S. N., Sriram D., Nath G., De Clercq E. (1999) Synthesis, antibacterial, antifungal and anti-HIV activity of schiff and mannich bases of isatin with N-[6-chlorobenzothiazol-2-yl] thiosemicarbazide. Indian J. Pharm. Sci., 61 358-361.
13. Abdel-Rahman L. H., El-Khatib R. M., Nassr L. A. E., Abu-Dief A. M., Ismael M. (2014) Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates. Spectrochim. Acta, Part A, 117 366-378.
14. Haribabu J., Jeyalakshmi K., Arun Y., Bhuvanesh N. S. P., Perumal P. T., Karvembu R. (2017) Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. J. Biol. Inorg. Chem., 22 461-480.
15. Tamizh M M., Cooper B. F. T., Macdonald C. L. B., Karvembu R. (2013) Palladium(II) complexes with salicylideneimine based tridentate ligand and triphenylphosphine: Synthesis, structure and catalytic activity in Suzuki–Miyaura cross coupling reactions. Inorg. Chim. Acta, 394 391-400.
16. Kalita M., Bhattacharjee T., Gogoi P., Barman P., Kalita R. D., Sarma B., Karmakar S. (2013) Synthesis, characterization, crystal structure and bioactivities of a new potential tridentate (ONS) Schiff base ligand N-[2-(benzylthio) phenyl] salicylaldimine and its Ni(II), Cu(II) and Co(II) complexes. Polyhedron, 60 47-53.
17. Hashem E. Y., et al. (2022) Removal of Cefotaxime Antibiotic from Industrial Waste water via Forming a Complex with Fe (III). J. Water Chem. Technol., 44.5 355-361.
18. Kaplancıklı Z. A., Altıntop M. D., Sever B., Cantürk Z., Ozdemir A. (2016) Synthesis and In Vitro Evaluation of New Thiosemicarbazone Derivatives as Potential Antimicrobial Agents. J. Chem.,1 1-7.
19. Serda M., Kalinowski D. S., Rasko N., Potuckova E., Mrozek-Wilczkiewicz A., Musiol R. (2014) Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS One, 9 110291.
20. Park K. C., Fouani L., Jansson P. J., Wooi D., Sahni S., Lane D. J. R., Richardson D. R. (2016) Solvent extraction and separation of copper from base metals using bifunctional ionic liquid from sulfate medium. Metal, 18 874-881.
21. Salas P. F., Herrmann C., Orvig. C. (2013) Metalloantimalarials. Chem. Rev. 113 3450-3492.
22. Kathiresan S., Mugesh S., Annaraj J., Murugan M. (2017) Mixed-ligand copper(ii) Schiff base complexes: the vital role of co-ligands in DNA/protein interactions and cytotoxicity. New J. Chem., 41 1267-1283.
23. Abid M., Agarwal S. M., Azam A. (2008) Synthesis and antiamoebic activity of metronidazole thiosemicarbazone analogues. Eur. J. Med. Chem., 43 2035-2039.
24. Mahalingam V., Chitrapriya N., Fronczek F. R., Natarajan K. (2008) Dimethyl sulfoxide ruthenium(II) complexes of thiosemicarbazones and semicarbazone: Synthesis, characterization and biological studies. Polyhedron, 27 2743-2750.
25. Dilovic I., Rubcic M., Vrdoljak V., Pavelic S. K., Kralj M., Piantanida C. I. M. (2008) Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 16 5189-5198.
26. Grabner S. and Modec B. (2019) Zn(II) Curcuminate Complexes with 2,2′-bipyridine and Carboxylates. Molecules, 24 2540-2560.
27. de Hoog P., Pachón L. D., Gamez P., Lutz M., Spek A. L. and Reedijk J. (2004) Solution-stable trinuclear zinc(ii) cluster from 4-methyl-2-N-(2-pyridylmethylene)aminophenol (HPyrimol). Dalton Trans.,17 2614-2615.
28. Modi C. K., Thaker B. T. (2002) Synthesis and characterization of lanthanide complexes of 1-phenyl-3-methyl-5-hydroxy-4-pyrazolyl-phenyl ketone-2′-picolinoyl hydrazone. Indian Chem., 41A 2544-2547.
29. Patel S. H., Pansuriya P. B., Chhasatia M. R., Parekh H. M., Patel M. N. (2008) Coordination chain polymeric assemblies of trivalent lanthanides with multidentate Schiff base synthetic, spectral investigation and thermal aspects. J. Therm. Anal. Calorim., 91 413-418.
30. Pitucha M., Korga-Plewko A., Czylkowska A., Rogalewicz B., Drozd M., Iwan M., Kubik J., Humeniuk E., Adamczuk G., Karczmarzyk Z., et al. (2021) Influence of Complexation of Thiosemicarbazone Derivatives with Cu (II) Ions on Their Antitumor Activity against Melanoma Cells. Int. J. Mol. Sci., 22 3104-3127.
31. Raja M. N., Jani D. H. and Koradiya S. (2019) Cu(II) Heterochelates: Synthesis, Spectroscopic, Thermal and in-vitro Biological Studies. Journal of Applicable Chemistry, 8(3) 1241-1251.
32. Kharadi G. J., Patel K. D. (2009) Antibacterial, spectral and thermal aspects of drug based-Cu(II) mixed ligand complexes. Appl. Organomet. Chem., 23(10) 391-397.
33. Tweedy B. G. (1964) Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology, 55 910-918.
34. Balouiri M., Sadiki M. & Ibnsouda S. K. (2016) Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6 71–79.
2. Musie G., Wei M., Subramaniam B., Busch D. H. (2001) Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coord. Chem. Rev., 789 219-221.
3. Mangamamba T., Ganorkar M. C., Swarnabala G. (2014) Characterization of Complexes Synthesized Using Schiff Base Ligands and Their Screening for Toxicity Two Fungal and One Bacterial Species on Rice Pathogens. Int. J. Inorg. Chem., 1-22.
4. Abozeed A., et al. (2022) Characterization and optical behavior of a new indole Schiff base using experimental data and TD-DFT/DMOl3 computations. Optical Materials, 131 112594.
5. Fouad M. R., Shamsan A. Q. S. and Abdel-Raheem S. A. A. (2023) Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques. Curr. Chem. Lett., 12 185–192.
6. Pandey R. K., et al. (2022) Metaheuristic algorithm integrated neural networks for well-test analyses of petroleum reservoirs. Scientific Reports, 12.1 1-16.
7. Ali Hazim M., et al. (2022) Catalytic and Multicomponent Reactions for Green Synthesis of Some Pyrazolone Compounds and Evaluation as Antimicrobial Agents. ACS omega, 7.33 29142-29152.
8. Tolba M. S., et al. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14.4 334-345.
9. Hamed M. M., et al. (2023) Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents. J. Mol. Struct., 1273 134371.
10. Mohamed G. G., Omar M., Hindy A. M. (2006) Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity. Turk J Chem., 30 361-382.
11. Diedrich B., Rigbolt K. T., R€oring M., Herr R., Kaeser-Pebernard S., Gretzmeier C. (2017) Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J., 36 646-663.
12. Pandeya S. N., Sriram D., Nath G., De Clercq E. (1999) Synthesis, antibacterial, antifungal and anti-HIV activity of schiff and mannich bases of isatin with N-[6-chlorobenzothiazol-2-yl] thiosemicarbazide. Indian J. Pharm. Sci., 61 358-361.
13. Abdel-Rahman L. H., El-Khatib R. M., Nassr L. A. E., Abu-Dief A. M., Ismael M. (2014) Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates. Spectrochim. Acta, Part A, 117 366-378.
14. Haribabu J., Jeyalakshmi K., Arun Y., Bhuvanesh N. S. P., Perumal P. T., Karvembu R. (2017) Synthesis of Ni(II) complexes bearing indole-based thiosemicarbazone ligands for interaction with biomolecules and some biological applications. J. Biol. Inorg. Chem., 22 461-480.
15. Tamizh M M., Cooper B. F. T., Macdonald C. L. B., Karvembu R. (2013) Palladium(II) complexes with salicylideneimine based tridentate ligand and triphenylphosphine: Synthesis, structure and catalytic activity in Suzuki–Miyaura cross coupling reactions. Inorg. Chim. Acta, 394 391-400.
16. Kalita M., Bhattacharjee T., Gogoi P., Barman P., Kalita R. D., Sarma B., Karmakar S. (2013) Synthesis, characterization, crystal structure and bioactivities of a new potential tridentate (ONS) Schiff base ligand N-[2-(benzylthio) phenyl] salicylaldimine and its Ni(II), Cu(II) and Co(II) complexes. Polyhedron, 60 47-53.
17. Hashem E. Y., et al. (2022) Removal of Cefotaxime Antibiotic from Industrial Waste water via Forming a Complex with Fe (III). J. Water Chem. Technol., 44.5 355-361.
18. Kaplancıklı Z. A., Altıntop M. D., Sever B., Cantürk Z., Ozdemir A. (2016) Synthesis and In Vitro Evaluation of New Thiosemicarbazone Derivatives as Potential Antimicrobial Agents. J. Chem.,1 1-7.
19. Serda M., Kalinowski D. S., Rasko N., Potuckova E., Mrozek-Wilczkiewicz A., Musiol R. (2014) Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS One, 9 110291.
20. Park K. C., Fouani L., Jansson P. J., Wooi D., Sahni S., Lane D. J. R., Richardson D. R. (2016) Solvent extraction and separation of copper from base metals using bifunctional ionic liquid from sulfate medium. Metal, 18 874-881.
21. Salas P. F., Herrmann C., Orvig. C. (2013) Metalloantimalarials. Chem. Rev. 113 3450-3492.
22. Kathiresan S., Mugesh S., Annaraj J., Murugan M. (2017) Mixed-ligand copper(ii) Schiff base complexes: the vital role of co-ligands in DNA/protein interactions and cytotoxicity. New J. Chem., 41 1267-1283.
23. Abid M., Agarwal S. M., Azam A. (2008) Synthesis and antiamoebic activity of metronidazole thiosemicarbazone analogues. Eur. J. Med. Chem., 43 2035-2039.
24. Mahalingam V., Chitrapriya N., Fronczek F. R., Natarajan K. (2008) Dimethyl sulfoxide ruthenium(II) complexes of thiosemicarbazones and semicarbazone: Synthesis, characterization and biological studies. Polyhedron, 27 2743-2750.
25. Dilovic I., Rubcic M., Vrdoljak V., Pavelic S. K., Kralj M., Piantanida C. I. M. (2008) Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 16 5189-5198.
26. Grabner S. and Modec B. (2019) Zn(II) Curcuminate Complexes with 2,2′-bipyridine and Carboxylates. Molecules, 24 2540-2560.
27. de Hoog P., Pachón L. D., Gamez P., Lutz M., Spek A. L. and Reedijk J. (2004) Solution-stable trinuclear zinc(ii) cluster from 4-methyl-2-N-(2-pyridylmethylene)aminophenol (HPyrimol). Dalton Trans.,17 2614-2615.
28. Modi C. K., Thaker B. T. (2002) Synthesis and characterization of lanthanide complexes of 1-phenyl-3-methyl-5-hydroxy-4-pyrazolyl-phenyl ketone-2′-picolinoyl hydrazone. Indian Chem., 41A 2544-2547.
29. Patel S. H., Pansuriya P. B., Chhasatia M. R., Parekh H. M., Patel M. N. (2008) Coordination chain polymeric assemblies of trivalent lanthanides with multidentate Schiff base synthetic, spectral investigation and thermal aspects. J. Therm. Anal. Calorim., 91 413-418.
30. Pitucha M., Korga-Plewko A., Czylkowska A., Rogalewicz B., Drozd M., Iwan M., Kubik J., Humeniuk E., Adamczuk G., Karczmarzyk Z., et al. (2021) Influence of Complexation of Thiosemicarbazone Derivatives with Cu (II) Ions on Their Antitumor Activity against Melanoma Cells. Int. J. Mol. Sci., 22 3104-3127.
31. Raja M. N., Jani D. H. and Koradiya S. (2019) Cu(II) Heterochelates: Synthesis, Spectroscopic, Thermal and in-vitro Biological Studies. Journal of Applicable Chemistry, 8(3) 1241-1251.
32. Kharadi G. J., Patel K. D. (2009) Antibacterial, spectral and thermal aspects of drug based-Cu(II) mixed ligand complexes. Appl. Organomet. Chem., 23(10) 391-397.
33. Tweedy B. G. (1964) Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology, 55 910-918.
34. Balouiri M., Sadiki M. & Ibnsouda S. K. (2016) Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6 71–79.