How to cite this paper
Zyabrev, V., Demydchuk, B., Pilyo, S., Zhirnov, V., Liavynets, O & Brovarets, V. (2024). Synthesis, characterization, and in vitro anticancer evaluation of 2,4 disulfonylsubstituted 5-aminothiazoles.Current Chemistry Letters, 13(3), 557-568.
Refrences
1 Petrou A., Fesatidou M., and Geronikaki A. (2021) Thiazole Ring-A Biologically Active Scaffold. Molecules, 26 (11) 3166. doi: 10.3390/molecules26113166.
2 Sharma P.C., Bansal K.K., Sharma A., Sharma D., and Deep A. (2020) Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J. Med. Chem., 188 112016. doi: 10.1016/j.ejmech.2019.112016.
3 Ayati A., Emami S., Moghimi S., and Foroumadi A. (2019) Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 11(15) 1929-1952. doi: 10.4155/fmc-2018-0416.
4 Sahil, Kaur K., and Jaitak V. (2022) Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr. Med. Chem., 29 (29) 4958-5009. doi: 10.2174/0929867329666220318100019.
5 Sabry M.A., Ghaly M.A., Maarouf A.R., and El-Subbagh H.I. (2022) New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity. Eur. J. Med. Chem., 241 114661. doi: 10.1016/j.ejmech.2022.114661.
6 Piao W., Yoo J., Lee D.K., Hwang H.J., and Kim J.H. (2001) Induction of G(2)/M phase arrest and apoptosis by a new synthetic anticancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. Biochem. Pharmacol., 62 (11) 1439-1447. doi: 10.1016/s0006-2952(01)00796-1.
7 Kwak S.H., Bang S.C., Seo H.H., Shin H.R., Lee K.C., Le Hoang T.A., and Jung S.H. (2006) Evaluation of anticancer activity of 4-vinyl-1-arylsulfonylimidazolidinones. Arch. Pharm. Res., 29 (9) 721-727. doi: 10.1007/BF02974070.
8 Kachaeva M.V., Pilyo S.G., Zhirnov V.V., and Brovarets V.S. (2019) Synthesis, characterization, and in vitro anticancer evaluation of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. Med. Chem. Res., 28 71–80. doi: 10.1007/s00044-018-2265-y.
9 Pilyo S.G., Kozachenko О.P., Zhirnov V.V., Kachaeva M.V., Kobzar O.L., Vovk A.I., and Brovarets V.S. (2020) Synthesis and anticancer activity of 5-sulfonyl derivatives of 1,3-oxazole-4-carboxylates. Ukr. Bioorg. Acta., 15 (2) 13-21. doi: 10.15407/bioorganica2020.02.013.
10 Mehrotra R., Jangir D.K., Agarwal S., Ray B., Singh P., and Srivastava A.K. (2013) Interaction studies of anticancer drug lomustine with calf thymus DNA using surface enhanced raman spectroscopy. NAPAN., 28 (4) 273–277. doi: 10.1007/s12647-013-0086-5.
11 Saha P., Debnath C., and Bérubé G. (2013) Steroid-linked nitrogen mustards as potential anticancer therapeutics: a review. J. Steroid Biochem. Mol. Biol., 137 271-300. doi: 10.1016/j.jsbmb.2013.05.004.
12 Jayaram H.N., Lui S., Plowman J., Pillwein K., Reardon A., Elliott W.L., and Weber G. (1990) Oncolytic activity and mechanism of action of a novel L-cysteine derivative, L-cysteine, ethyl ester, S-(N-methylcarbamate) monohydrochloride. Cancer Chemother. Pharmacol., 26 (2) 88-92. doi: 10.1007/BF02897250.
13 van Osdol W.W., Myers T.G., Paull K.D., Kohn K.W., and Weinstein J.N. (1994) Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Nat. Cancer Inst., 86 (24) 1853-1859. doi: 10.1093/jnci/86.24.1853.
14 Vrabel V., Pavelcik F., Kelloe E., Miertus S., Konecny V., and Lokaj J. (1985) The crystal and electron structure of N-(2,2,2-trichloro-1-morpholino-ethyl)formamide. Collection Czechoslovak Chem. Commun., 50 (8) 1619-1628. doi: 10.1135/cccc19851619.
15 Kornienko A., Zyabrev V., and Brovarets V. (2014) New method for synthesis of 4-tosyl-5-chlorothiazole-2-thiol derivatives. Rus. J. Gen. Chem., 84 (11) 2273-2274. doi: 10.1134/S1070363214110401.
16 Mukaka M. A. (2012) Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J., 24 69-71. doi: 10.4236/jwarp.2015.77047.