How to cite this paper
Kumar, C., Manjunatha, S & Nandeshwarappa, B. (2023). Synthesis of novel pyrazolic analogues of chalcones as potential antibacterial and antifungal agents.Current Chemistry Letters, 12(3), 613-622.
Refrences
1. Fair R. J., and Tor Y. (2014) Antibiotics and bacterial resistance in the 21st century, Perspect. Med. Chem., 6 (6) 25-64.
2. Mourenza Á., Gil J. A., Mateos L. M., and Letek M. (2020) “Oxidative stress-generating antimicrobials, a novel strategy to overcome antibacterial resistance,” Antioxidants., 9 (5) 361.
3. Mustafa M., and Mostafa Y. A. (2020) A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity, Monatshefte Für Chem. - Chem. Mon., 151 417-427.
4. Bollenbach T., (2015) Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution, Pub. Med., 27 1-9.
5. Mishra S., and Singh P., (2016) Hybrid molecules: the privileged scaffolds for various pharmaceuticals, Euro. J. Med. Chem., 124 500-536.
6. Konidala S. K., Kotra V., Danduga R. C. S. R, Kola P. K., Bhandare R. R., and Shaik A. B. (2021) Design, multistep synthesis and in-vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach, Arab. J. Chem., 14 (6) 103154.
7. Petrou A., Fesatidou M., and Geronikaki A. (2021) Thiazole ring a biologically active scaffold, Mol., 26 (11) 3166.
8. Farooq S., and Ngaini Z. (2019) Recent Synthetic Methodologies for Chalcone Synthesis (2013-2018), Curr. Org. catal., 6 (3) 184-192.
9. Nandeshwarappa B. P., Chandrashekharappa S., Prakash G. K., and Prasanna kumar J. K. (2020) Efficient synthesis and characterization of novel 2H-[1,4] oxa selenepino[5, 6-b]quinolin-3 (5H)-ones derivatives, Chem. Data. Collect., 100446.
10. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S.O. (2020) Synthesis and antibacterial evaluation of 3-acetyl-2H-selenopyrano[2,3-b]quinolin-2-ones, Chem. Data. Collect., 100484.
11. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S.O. (2020) Synthesis and characterization of novel ethyl 2-oxo-2H-selenopyrano[2, 3-b]quinoline-3-carboxylates and studied their antimicrobial activities, Chem. Data. Collect., 100466.
12. Nandeshwarappa B. P., Prakash G. K., and Sadashiv S. O. (2020) Synthesis and Antimicrobial Activities of Dihydroazeto[2,3:4,5]seleno[2, 3-b] quinolines. IntechOpen Book, Chapter-1., 1-6.
13. Nandeshwarappa B. P., Chandrashekharappa S., and Gowda R. N. (2020) Selenium-Containing Heterocycles: Synthetic investigation of some new series 3-(5-mercapto-1,3, 4-oxadiazol-2-yl)- 2H -selenopyrano [2, 3-b]quinolin-2-ones, Chem. Data. Collect., 29 100510.
14. Nandeshwarappa B. P., Chandrashekharappa S., and Prakash G. K. (2020) Nitrogen and Selenium Containing Heterocycles: Part-1: Synthesis of some new substituted 3-(5-(2 oxopropylthio)-1,3, 4 -oxadiazol-2-yl)-2H-selenopyrano [2, 3 - b]quinolin-2-ones, Chem. Data. Collect., 29 100534.
15. Nandeshwarappa B. P., and Chandrashekharappa S. (2021) Synthesis of novel substituted 3-(2-(1,3,4-thiadiazol-2-ylamino)acetyl)-2H-selenopyrano[2,3-b]quinolin-2-ones, Chem. Data. Collect., 35 100748.
16. Praveen Kumar C. H., Manjunatha S. Katagi., and Nandeshwarappa B. P. (2022) Novel synthesis of quinoline chalcone derivatives-Design, synthesis, characterization, and antimicrobial activity, Chem. Data. Collect., 42 100955.
17. Singh P., Anand A., and Kumar V. (2014) Recent developments in biological activities of chalcones: A mini review. Euro. J. Med. Chem., 85 758-777.
18. Arif R., Rana M., Yasmeen S., Abid M., and Khan M. S. (2020) Facile Synthesis of Chalcone Derivatives as Antibacterial Agents: synthesis, DNA Binding, Molecular Docking, DFT and Antioxidant Studies, J. Mole. Stru., 1208 127905.
19. Farooq S., and Ngaini Z. (2020) One Pot and Two Pot Synthetic Strategies and Biological Applications of Epoxy Chalcones, Chem. Afri., 3 (2) 291-302.
20. Farooq S., and Ngaini Z. (2020) One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines, Tetrah. Lett., 61 (4) 151416.
21. Dan W., and Dai J. (2020) Recent Developments of Chalcones as Potential Antibacterial Agents in Medicinal Chemistry, Euro. J. Med. Chem., 187 111980.
22. Yang Y., Wu X., Jia J., Shen L., Zhou W., Yang J., and Song Y. (2020) Investigation of Ultrafast Optical Nonlinearities in Novel Bis-Chalcone Derivatives, Optic. Laser Tech., 123 105903.
23. Nehra B., Rulhania S., Jaswal S., Kumar B., Singh G., and Monga V. (2020) Recent advancements in the development of bioactive pyrazoline derivatives, Euro. J. Med. Chem., 205 112666.
24. Ayati A., Emami S., Asadipour A., Shafiee A., and Foroumadi A. (2015) Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery, Euro. J. Med. Chem., 97 699-718.
25. Khidre R. E., and Radini I. A. M. (2021) Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents, Sci. Rep., 11 (1) 7846.
26. Dawood K. M., Eldebss T. M., El-Zahabi H. S., and Yousef M. H. (2015) Synthesis and antiviral activity of some new bis-1, 3-thiazole derivatives, Euro. J. Med. Chem., 102 266-276.
27. Gollapalli M., Taha M., Javid M. T. (2019) Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor, Bioorg. Chem., 85 33-48.
28. Siddiqui A. A., Partap S., Khisal S., Yar M. S., and Mishra R. (2020) Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues, Bioorg. Chem., 99 103584.
29. Jaishree V., Ramdas N., Sachin J., and Ramesh B. (2012) In vitro antioxidant properties of new thiazole derivatives, J. Saudi Chem. Soci., 16 (4) 371-376.
30. Kasralikar H., Jadhavar S., Goswami S., Kaminwar N., and Bhusare S. (2019) Design, synthesis and molecular docking of pyrazolo [3, 4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors, Bioorg. Chem., 86 437-444.
31. Modrić M., Bozicevic M., Faraho I., Bosnar M., and Skoric I. (2021) Design, synthesis and biological evaluation of new 1, 3-thiazole derivatives as potential anti-inflammatory agents, J. Mole. Struc., 1239 130526.
32. Ghotbi G., Mahdavi M., and Najafi Z. (2020) Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease, Bioorg. Chem., 103 104186.
33. Kesari C., Rama K. R., and Sedighi K. (2021) Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents, Synth. Commu., 51 (9) 1406-1416.
34. Rana M., Arif R., and Khan F. I. (2021) Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies, Bioorg. Chem., 108 104665.
35. Tok F., Irem Abas B., Cevik O., and Kocyigit-Kaymakcioglu B. (2020) Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents, Bioorg. Chem., 1 (2) 104063.
36. Banerjee B. (2017) Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles, J. Nano. struc. Chem., 7 (4) 389-413.
37. Rani M., and Mohamad Y. (2014) Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives. J. Saudi. Chem. Soc.,18 411-7.
38. Abdelgalila A., Mustafaa A. A., Alib S. A. M., and Omar M. Yassin. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize, Curr. Chem. Lett., 11 219-226.
39. Abeer A. Ahmed., Shaaban K. Mohamed., Shaban A. A., and Abdel-Raheem. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm, Curr. Chem. Lett., 11 359-370.
40. Adel Q. S., Shamsana., Mohamed Riad Fouadb., Waleed A. R. M., Yacoobc., Mokhtar A., Abdul-Malikd., and Shaban A. A. Abdel-Raheem. (2023) Performance of a variety of treatment processes to purify wastewater in the food industry, Curr. Chem. Lett., 12 431-438.
41. Shivarudrappa H. Pattanashetty., Hosamani K. K., and Delicia A. Barretto. (2018) Microwave assisted synthesis, computational study and biological evaluation of novel quinoline-2(1H)-one based pyrazoline hybrids, Chem. Data Collect., 15 184-196.
42. Katagi M. S., Jennifer Fernandes., Shivlingrao Mamledesai D., Satyanarayana., Prakash Dabadi., and Girish Bolakatti. (2015) Synthesis and evaluation of quinolin-2(1H)-one fused oxazole as an in vitro reactivator of organophosphorus compound inhibited acetylcholinesterase, J. Pharm. Res., 14 (2) 51-56.
43. Katagi M. S., Mamledesai S., and Bolakatti G. (2020) Design, synthesis, and characterization of novel class of 2-quinolon-3-oxime reactivators for acetylcholinesterase inhibited by organophosphorus compounds, Chem. Data Collect., 30 100560.
2. Mourenza Á., Gil J. A., Mateos L. M., and Letek M. (2020) “Oxidative stress-generating antimicrobials, a novel strategy to overcome antibacterial resistance,” Antioxidants., 9 (5) 361.
3. Mustafa M., and Mostafa Y. A. (2020) A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity, Monatshefte Für Chem. - Chem. Mon., 151 417-427.
4. Bollenbach T., (2015) Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution, Pub. Med., 27 1-9.
5. Mishra S., and Singh P., (2016) Hybrid molecules: the privileged scaffolds for various pharmaceuticals, Euro. J. Med. Chem., 124 500-536.
6. Konidala S. K., Kotra V., Danduga R. C. S. R, Kola P. K., Bhandare R. R., and Shaik A. B. (2021) Design, multistep synthesis and in-vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach, Arab. J. Chem., 14 (6) 103154.
7. Petrou A., Fesatidou M., and Geronikaki A. (2021) Thiazole ring a biologically active scaffold, Mol., 26 (11) 3166.
8. Farooq S., and Ngaini Z. (2019) Recent Synthetic Methodologies for Chalcone Synthesis (2013-2018), Curr. Org. catal., 6 (3) 184-192.
9. Nandeshwarappa B. P., Chandrashekharappa S., Prakash G. K., and Prasanna kumar J. K. (2020) Efficient synthesis and characterization of novel 2H-[1,4] oxa selenepino[5, 6-b]quinolin-3 (5H)-ones derivatives, Chem. Data. Collect., 100446.
10. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S.O. (2020) Synthesis and antibacterial evaluation of 3-acetyl-2H-selenopyrano[2,3-b]quinolin-2-ones, Chem. Data. Collect., 100484.
11. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S.O. (2020) Synthesis and characterization of novel ethyl 2-oxo-2H-selenopyrano[2, 3-b]quinoline-3-carboxylates and studied their antimicrobial activities, Chem. Data. Collect., 100466.
12. Nandeshwarappa B. P., Prakash G. K., and Sadashiv S. O. (2020) Synthesis and Antimicrobial Activities of Dihydroazeto[2,3:4,5]seleno[2, 3-b] quinolines. IntechOpen Book, Chapter-1., 1-6.
13. Nandeshwarappa B. P., Chandrashekharappa S., and Gowda R. N. (2020) Selenium-Containing Heterocycles: Synthetic investigation of some new series 3-(5-mercapto-1,3, 4-oxadiazol-2-yl)- 2H -selenopyrano [2, 3-b]quinolin-2-ones, Chem. Data. Collect., 29 100510.
14. Nandeshwarappa B. P., Chandrashekharappa S., and Prakash G. K. (2020) Nitrogen and Selenium Containing Heterocycles: Part-1: Synthesis of some new substituted 3-(5-(2 oxopropylthio)-1,3, 4 -oxadiazol-2-yl)-2H-selenopyrano [2, 3 - b]quinolin-2-ones, Chem. Data. Collect., 29 100534.
15. Nandeshwarappa B. P., and Chandrashekharappa S. (2021) Synthesis of novel substituted 3-(2-(1,3,4-thiadiazol-2-ylamino)acetyl)-2H-selenopyrano[2,3-b]quinolin-2-ones, Chem. Data. Collect., 35 100748.
16. Praveen Kumar C. H., Manjunatha S. Katagi., and Nandeshwarappa B. P. (2022) Novel synthesis of quinoline chalcone derivatives-Design, synthesis, characterization, and antimicrobial activity, Chem. Data. Collect., 42 100955.
17. Singh P., Anand A., and Kumar V. (2014) Recent developments in biological activities of chalcones: A mini review. Euro. J. Med. Chem., 85 758-777.
18. Arif R., Rana M., Yasmeen S., Abid M., and Khan M. S. (2020) Facile Synthesis of Chalcone Derivatives as Antibacterial Agents: synthesis, DNA Binding, Molecular Docking, DFT and Antioxidant Studies, J. Mole. Stru., 1208 127905.
19. Farooq S., and Ngaini Z. (2020) One Pot and Two Pot Synthetic Strategies and Biological Applications of Epoxy Chalcones, Chem. Afri., 3 (2) 291-302.
20. Farooq S., and Ngaini Z. (2020) One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines, Tetrah. Lett., 61 (4) 151416.
21. Dan W., and Dai J. (2020) Recent Developments of Chalcones as Potential Antibacterial Agents in Medicinal Chemistry, Euro. J. Med. Chem., 187 111980.
22. Yang Y., Wu X., Jia J., Shen L., Zhou W., Yang J., and Song Y. (2020) Investigation of Ultrafast Optical Nonlinearities in Novel Bis-Chalcone Derivatives, Optic. Laser Tech., 123 105903.
23. Nehra B., Rulhania S., Jaswal S., Kumar B., Singh G., and Monga V. (2020) Recent advancements in the development of bioactive pyrazoline derivatives, Euro. J. Med. Chem., 205 112666.
24. Ayati A., Emami S., Asadipour A., Shafiee A., and Foroumadi A. (2015) Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery, Euro. J. Med. Chem., 97 699-718.
25. Khidre R. E., and Radini I. A. M. (2021) Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents, Sci. Rep., 11 (1) 7846.
26. Dawood K. M., Eldebss T. M., El-Zahabi H. S., and Yousef M. H. (2015) Synthesis and antiviral activity of some new bis-1, 3-thiazole derivatives, Euro. J. Med. Chem., 102 266-276.
27. Gollapalli M., Taha M., Javid M. T. (2019) Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor, Bioorg. Chem., 85 33-48.
28. Siddiqui A. A., Partap S., Khisal S., Yar M. S., and Mishra R. (2020) Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues, Bioorg. Chem., 99 103584.
29. Jaishree V., Ramdas N., Sachin J., and Ramesh B. (2012) In vitro antioxidant properties of new thiazole derivatives, J. Saudi Chem. Soci., 16 (4) 371-376.
30. Kasralikar H., Jadhavar S., Goswami S., Kaminwar N., and Bhusare S. (2019) Design, synthesis and molecular docking of pyrazolo [3, 4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors, Bioorg. Chem., 86 437-444.
31. Modrić M., Bozicevic M., Faraho I., Bosnar M., and Skoric I. (2021) Design, synthesis and biological evaluation of new 1, 3-thiazole derivatives as potential anti-inflammatory agents, J. Mole. Struc., 1239 130526.
32. Ghotbi G., Mahdavi M., and Najafi Z. (2020) Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease, Bioorg. Chem., 103 104186.
33. Kesari C., Rama K. R., and Sedighi K. (2021) Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents, Synth. Commu., 51 (9) 1406-1416.
34. Rana M., Arif R., and Khan F. I. (2021) Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies, Bioorg. Chem., 108 104665.
35. Tok F., Irem Abas B., Cevik O., and Kocyigit-Kaymakcioglu B. (2020) Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents, Bioorg. Chem., 1 (2) 104063.
36. Banerjee B. (2017) Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles, J. Nano. struc. Chem., 7 (4) 389-413.
37. Rani M., and Mohamad Y. (2014) Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives. J. Saudi. Chem. Soc.,18 411-7.
38. Abdelgalila A., Mustafaa A. A., Alib S. A. M., and Omar M. Yassin. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize, Curr. Chem. Lett., 11 219-226.
39. Abeer A. Ahmed., Shaaban K. Mohamed., Shaban A. A., and Abdel-Raheem. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm, Curr. Chem. Lett., 11 359-370.
40. Adel Q. S., Shamsana., Mohamed Riad Fouadb., Waleed A. R. M., Yacoobc., Mokhtar A., Abdul-Malikd., and Shaban A. A. Abdel-Raheem. (2023) Performance of a variety of treatment processes to purify wastewater in the food industry, Curr. Chem. Lett., 12 431-438.
41. Shivarudrappa H. Pattanashetty., Hosamani K. K., and Delicia A. Barretto. (2018) Microwave assisted synthesis, computational study and biological evaluation of novel quinoline-2(1H)-one based pyrazoline hybrids, Chem. Data Collect., 15 184-196.
42. Katagi M. S., Jennifer Fernandes., Shivlingrao Mamledesai D., Satyanarayana., Prakash Dabadi., and Girish Bolakatti. (2015) Synthesis and evaluation of quinolin-2(1H)-one fused oxazole as an in vitro reactivator of organophosphorus compound inhibited acetylcholinesterase, J. Pharm. Res., 14 (2) 51-56.
43. Katagi M. S., Mamledesai S., and Bolakatti G. (2020) Design, synthesis, and characterization of novel class of 2-quinolon-3-oxime reactivators for acetylcholinesterase inhibited by organophosphorus compounds, Chem. Data Collect., 30 100560.