How to cite this paper
Derrar, S & Rafai, O. (2024). Buckminsterfullerene fragments used as hydrogen carrier: Case of corannulene derivatives.Current Chemistry Letters, 13(3), 467-476.
Refrences
1. Ghiasi R. and Valizadeh A. (2021) Hydrogen adsorption and storage on palladium-functionalized graphyne and its boron nitride analogue. J. Struct. Chem., 62, 835-844.
2. Abadalla A. M., Hossain S., Nisfindy O. B., Azad T., Dawood M. and Azad K. (2018) Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. and Manage., 165, 602-627.
3. Peraldo Bicelli L. (1986) Hydrogen: A clean energy source. Int. J. Hydrog. Energy, 11(9), 555-562.
4. Acar C. and Dincer I. (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrog. Energy, 39(1), 1-12.
5. Adris A. M., Pruden B., Lim, C. J. and Grace J. (1993) On the reported attempts to radically improve the performance of the steam methane reforming reactor. Can. J. Chem. Eng., 74(2), 177-186.
6. Krumpelt M., Krause T. R., Carter J. D., Kopasz J. P. and Ahmed S. (2002) Fuel processing for fuel cell systems in transportation and portable power applications. Catal. Today, 77, 3-16.
7. Demirbaş A. (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. and Manage., 42(11), 1357-1378.
8. Liu S., Zhu J., Chen M., Xin W., Yang Z. and Kong L. (2014) Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Int. J. Hydrog. Energy, 39(25), 13128-13135.
9. Rabah M. A. and Eldighidy S. M. (1989) Low cost hydrogen production from waste. Int. J. Hydrog. Energy, 14(4), 221-227.
10. Levin D. B., Pitt L., and Love M. (2004) Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrog. Energy, 29(2), 173-185.
11. Ni M., Leung D. Y. C., Leung M. K. H. and Sumathy K. (2006) An overview of hydrogen production from biomass. Fuel Process. Technol., 87, 461-472.
12. Lin C. Y. and Jo C. H. (2003) Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J. Chem. Technol. Biotechnol., 78(6), 678-684.
13. Ozcan H and Dincer I. (2014) Energy and exergy analyses of a solar driven Mg-Cl hybrid thermochemical cycle for co-production of power and hydrogen. Int. J. Hydrog. Energy, 39 (28), 15330-15341.
14. Zeng K. and Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci., 36(3), 307-326.
15. Dincer I. (2010) Green methods for hydrogen production. Int. J. Hydrog. Energy 2012, 37(2), 1954-1971. https://doi.org/10.1016/j.ijhydene.2011.03.173.
16. Bethoux O. (2020) Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies, 13, 5843.
17. Xia L., Liu Q., Wang F. and Lu J. (2016) Improving the hydrogen storage properties of metal-organic framework by functionalization. J. Mol. Model., 22(10), 254.
18. Petrushenko I. K. and Bettinger H. F. (2001) Hydrogen adsorption on inorganic benzenes decorated with alkali metal cations: theoretical study. Phys. Chem. Chem. Phys., 23, 5315-5324.
19. Railey P., Song Y., Liu T. and Li Y. (2017) Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater. Res. Bull., 96, 385-394.
20. Zuettel A. (2003) Materials for hydrogen storage. Mater. Today, 6(9), 24–33.
21. Grochala W. and Edwards P. P. (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev., 104, 1283–1316.
22. Sakintuna B., Lamari-Darkrim F. and Hirscher M. (2007) Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy, 32, 1121-1140.
23. Darkrim F. L., Malbrunot P. and Tartaglia G. P. (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hydrog. Energy, 27, 193-202.
24. Dillon A. C. and Heben M. J. (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl. Phys. A Mater. Sci. Process, 72(2), 133-142.
25. Ye Y., Ahn C. C., Witham C., Fultz B., Liu J., Rinzler A. G. and Smalley R. E. (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett., 74, 2307-2309.
26. Moradi M. and Naderi N. (2014) First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet. Struct. Chem., 25, 1289–1296.
27. Jiang H., Cheng X. L., Zhang H., Tang Y. J. and Wang J. (2015) J. Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Struct. Chem., 26, 531–537.
28. Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S. and Heben M. J. (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377-379.
29. Armaković S., Armaković S. J., Šetrajčić J. P. and Dzambas L. D. (2013) Specificities of boron disubstituted sumanenes. J. Mol. Model., 19, 1153–1166.
30. Reisi-Vanani A. and Shamsali F. (2017) Influence of nitrogen doping in sumanene framework toward hydrogen storage: a computational study. J. Mol. Graphics and Modeling, 76, 475–487.
31. Derrar S. N. and Belhakem M. (2017) Heterosubstituted sumanene as media for hydrogen storage: a theoretical study. Int. J. Hydrog. Energy, 42, 19583–19590.
32. Derrar S. N. (2021) Study of hydrogen adsorption by N+ - and Si-decorated sumanene. Struct. Chem., 32, 759–765.
33. Gaboardi M., Pratt F., Milanese C., Taylor J., Siegel J. and Fernandez Alonso F. (2019) The interaction of hydrogen with corannulene, a promising new platform for energy storage. Carbon, 155, 432–437.
34. Rellán-Piñeiro M., Rodríguez-Otero J., Cabaleiro-Lago E. M. and Josa D. (2013) DFT and MP2 study of the interaction between corannulene and alkali cations. J. Mol. Model., 19, 2049–2055.
35. Reisi-Vanani A. and Faghih S. (2014) Computational study of the molecular hydrogen physisorption in some of the corannulene derivatives as a carbon nanostructure. J. Saudi. Chem. Society, 18(5), 666-673.
36. Perez C., Steber A. L., Rijs A. M., Temelso B., Shields G. C., Lopez J. C., Kisiel Z. and Schnell M. (2017) Corannulene and its complex with water: A tiny cup of water. Phys. Chem. Chem. Phys., 19, 14214-14223.
37. Josa D., Rodríguez-Otero J., Cabaleiro-Lago E. M., Santos L. A. and Ramalho T. C. (2014) Substituted Corannulenes and Sumanenes as Fullerene Receptors. A DFT-¬D Study. J. Phys. Chem. A, 118(40), 9521-9528.
38. Reisi-Vanani A., Rahimi S., Nasiri Kokhdan S. and Ebrahimpour-Komleh H. (2015) Computational study of the gas phase reaction of hydrogen azide and corannulene: a DFT study. Comput. and Theoret. Chem., 1070, 94-101.
39. Banerjee S., Pillai C. G. S. and Majumdar C. (2011) Hydrogen absorption behaviour of doped corannulene: A first principles study. Int. J. Hydrog. Energy, 36(8), 4976-4983.
40. Chen X., Bai F. Q., Tang Y. and Zhang H. X. (2016) How the substituents in corannulene and sumanene derivatives alter their molecular assemblings and charge transport properties? —A theoretical study with a dimer model. J. of Comput. Chem., 37(9), 813-824.
41. Sadowski M, Synkiewicz-Musialska B and Kula K. (2024) (1E,3E)-1,4-dinitro-1,3-butadiene—synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation. Molecules, 29, 542.
42. Ballini R., Petrini M. and Rosini G. (2008) Nitroalkanes as central reagents in the synthesis of spiroketals. Molecules, 13, 319-330.
43. Nishiwaki N. (2020) Walk through recent nitro chemistry advances. Molecules, 25, 3680.
44. Chai J. D. and Head-Gordon M. (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 10, 6615-6620.
45. Boys S. F. and Bernardi F. D. (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19, 553–566.
46. Gaussian 09, Revision A.02, Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Scalmani, G.; Barone, V.; Petersson, G.-A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, M.; Bloino, J.; Janesko, B.-J.; Gomperts, R.; Mennucci, B.; Hratchian, H.-P.; Ortiz, J.-V.; Izmaylov, A.-F.; Sonnenberg, J.-L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.-G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J.-A, , Peralta, J.-E.; Ogliaro, F.; Bearpark, M.; Heyd, J.-J.; Brothers, E.; Kudin, K.-N.; Staroverov, V.-N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.-C.; Iyengar, S.-S.; Tomasi, J.; Cossi, M.; Millam, J.-M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.-W.; Martin, R.-L.; Morokuma, K.; Farkas, O.; Foresman, J.-B.; Fox, D.-J. (2016) Gaussian, Inc., Wallingford CT
47. Domingo L. R., Ríos-Gutiérrez M. and Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, 748.
2. Abadalla A. M., Hossain S., Nisfindy O. B., Azad T., Dawood M. and Azad K. (2018) Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. and Manage., 165, 602-627.
3. Peraldo Bicelli L. (1986) Hydrogen: A clean energy source. Int. J. Hydrog. Energy, 11(9), 555-562.
4. Acar C. and Dincer I. (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrog. Energy, 39(1), 1-12.
5. Adris A. M., Pruden B., Lim, C. J. and Grace J. (1993) On the reported attempts to radically improve the performance of the steam methane reforming reactor. Can. J. Chem. Eng., 74(2), 177-186.
6. Krumpelt M., Krause T. R., Carter J. D., Kopasz J. P. and Ahmed S. (2002) Fuel processing for fuel cell systems in transportation and portable power applications. Catal. Today, 77, 3-16.
7. Demirbaş A. (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. and Manage., 42(11), 1357-1378.
8. Liu S., Zhu J., Chen M., Xin W., Yang Z. and Kong L. (2014) Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Int. J. Hydrog. Energy, 39(25), 13128-13135.
9. Rabah M. A. and Eldighidy S. M. (1989) Low cost hydrogen production from waste. Int. J. Hydrog. Energy, 14(4), 221-227.
10. Levin D. B., Pitt L., and Love M. (2004) Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrog. Energy, 29(2), 173-185.
11. Ni M., Leung D. Y. C., Leung M. K. H. and Sumathy K. (2006) An overview of hydrogen production from biomass. Fuel Process. Technol., 87, 461-472.
12. Lin C. Y. and Jo C. H. (2003) Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. J. Chem. Technol. Biotechnol., 78(6), 678-684.
13. Ozcan H and Dincer I. (2014) Energy and exergy analyses of a solar driven Mg-Cl hybrid thermochemical cycle for co-production of power and hydrogen. Int. J. Hydrog. Energy, 39 (28), 15330-15341.
14. Zeng K. and Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci., 36(3), 307-326.
15. Dincer I. (2010) Green methods for hydrogen production. Int. J. Hydrog. Energy 2012, 37(2), 1954-1971. https://doi.org/10.1016/j.ijhydene.2011.03.173.
16. Bethoux O. (2020) Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies, 13, 5843.
17. Xia L., Liu Q., Wang F. and Lu J. (2016) Improving the hydrogen storage properties of metal-organic framework by functionalization. J. Mol. Model., 22(10), 254.
18. Petrushenko I. K. and Bettinger H. F. (2001) Hydrogen adsorption on inorganic benzenes decorated with alkali metal cations: theoretical study. Phys. Chem. Chem. Phys., 23, 5315-5324.
19. Railey P., Song Y., Liu T. and Li Y. (2017) Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater. Res. Bull., 96, 385-394.
20. Zuettel A. (2003) Materials for hydrogen storage. Mater. Today, 6(9), 24–33.
21. Grochala W. and Edwards P. P. (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev., 104, 1283–1316.
22. Sakintuna B., Lamari-Darkrim F. and Hirscher M. (2007) Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy, 32, 1121-1140.
23. Darkrim F. L., Malbrunot P. and Tartaglia G. P. (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hydrog. Energy, 27, 193-202.
24. Dillon A. C. and Heben M. J. (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl. Phys. A Mater. Sci. Process, 72(2), 133-142.
25. Ye Y., Ahn C. C., Witham C., Fultz B., Liu J., Rinzler A. G. and Smalley R. E. (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett., 74, 2307-2309.
26. Moradi M. and Naderi N. (2014) First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet. Struct. Chem., 25, 1289–1296.
27. Jiang H., Cheng X. L., Zhang H., Tang Y. J. and Wang J. (2015) J. Molecular dynamic investigations of hydrogen storage efficiency of graphene sheets with the bubble structure. Struct. Chem., 26, 531–537.
28. Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S. and Heben M. J. (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377-379.
29. Armaković S., Armaković S. J., Šetrajčić J. P. and Dzambas L. D. (2013) Specificities of boron disubstituted sumanenes. J. Mol. Model., 19, 1153–1166.
30. Reisi-Vanani A. and Shamsali F. (2017) Influence of nitrogen doping in sumanene framework toward hydrogen storage: a computational study. J. Mol. Graphics and Modeling, 76, 475–487.
31. Derrar S. N. and Belhakem M. (2017) Heterosubstituted sumanene as media for hydrogen storage: a theoretical study. Int. J. Hydrog. Energy, 42, 19583–19590.
32. Derrar S. N. (2021) Study of hydrogen adsorption by N+ - and Si-decorated sumanene. Struct. Chem., 32, 759–765.
33. Gaboardi M., Pratt F., Milanese C., Taylor J., Siegel J. and Fernandez Alonso F. (2019) The interaction of hydrogen with corannulene, a promising new platform for energy storage. Carbon, 155, 432–437.
34. Rellán-Piñeiro M., Rodríguez-Otero J., Cabaleiro-Lago E. M. and Josa D. (2013) DFT and MP2 study of the interaction between corannulene and alkali cations. J. Mol. Model., 19, 2049–2055.
35. Reisi-Vanani A. and Faghih S. (2014) Computational study of the molecular hydrogen physisorption in some of the corannulene derivatives as a carbon nanostructure. J. Saudi. Chem. Society, 18(5), 666-673.
36. Perez C., Steber A. L., Rijs A. M., Temelso B., Shields G. C., Lopez J. C., Kisiel Z. and Schnell M. (2017) Corannulene and its complex with water: A tiny cup of water. Phys. Chem. Chem. Phys., 19, 14214-14223.
37. Josa D., Rodríguez-Otero J., Cabaleiro-Lago E. M., Santos L. A. and Ramalho T. C. (2014) Substituted Corannulenes and Sumanenes as Fullerene Receptors. A DFT-¬D Study. J. Phys. Chem. A, 118(40), 9521-9528.
38. Reisi-Vanani A., Rahimi S., Nasiri Kokhdan S. and Ebrahimpour-Komleh H. (2015) Computational study of the gas phase reaction of hydrogen azide and corannulene: a DFT study. Comput. and Theoret. Chem., 1070, 94-101.
39. Banerjee S., Pillai C. G. S. and Majumdar C. (2011) Hydrogen absorption behaviour of doped corannulene: A first principles study. Int. J. Hydrog. Energy, 36(8), 4976-4983.
40. Chen X., Bai F. Q., Tang Y. and Zhang H. X. (2016) How the substituents in corannulene and sumanene derivatives alter their molecular assemblings and charge transport properties? —A theoretical study with a dimer model. J. of Comput. Chem., 37(9), 813-824.
41. Sadowski M, Synkiewicz-Musialska B and Kula K. (2024) (1E,3E)-1,4-dinitro-1,3-butadiene—synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation. Molecules, 29, 542.
42. Ballini R., Petrini M. and Rosini G. (2008) Nitroalkanes as central reagents in the synthesis of spiroketals. Molecules, 13, 319-330.
43. Nishiwaki N. (2020) Walk through recent nitro chemistry advances. Molecules, 25, 3680.
44. Chai J. D. and Head-Gordon M. (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 10, 6615-6620.
45. Boys S. F. and Bernardi F. D. (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19, 553–566.
46. Gaussian 09, Revision A.02, Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A.; Cheeseman, J.-R.; Scalmani, G.; Barone, V.; Petersson, G.-A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, M.; Bloino, J.; Janesko, B.-J.; Gomperts, R.; Mennucci, B.; Hratchian, H.-P.; Ortiz, J.-V.; Izmaylov, A.-F.; Sonnenberg, J.-L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.-G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J.-A, , Peralta, J.-E.; Ogliaro, F.; Bearpark, M.; Heyd, J.-J.; Brothers, E.; Kudin, K.-N.; Staroverov, V.-N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.-C.; Iyengar, S.-S.; Tomasi, J.; Cossi, M.; Millam, J.-M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.-W.; Martin, R.-L.; Morokuma, K.; Farkas, O.; Foresman, J.-B.; Fox, D.-J. (2016) Gaussian, Inc., Wallingford CT
47. Domingo L. R., Ríos-Gutiérrez M. and Pérez P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, 748.