How to cite this paper
Singh, G., Hussain, K & Gaba, R. (2022). Exploring intermolecular interactions in some halogen substituted formyl coumarins and their DFT studies.Current Chemistry Letters, 11(2), 245-254.
Refrences
1. Desiraju G. R. (2007) Crystal engineering: A holistic view. Angew. Chemie - Int. Ed., 46, 8342–8356
2. Kollman P. A. (1977) Noncovalent Interactions. Acc Chem Res., 10, 365–371.
3. Mooibroek T. J., Gamez P., Reedijk J. (2008) Lone pair-π interactions: A new supramolecular bond? CrystEngComm., 10, 1501–1515.
4. Arkas M., Kitsou I., Gkouma A., Papageorgiou M. (2019) The role of hydrogen bonds in the mesomorphic behaviour of supramolecular assemblies organized in dendritic architectures. Liq Cryst Rev., 7, 60–105.
5. Roesky H. W., Andruh M. (2003) The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord Chem Rev., 236, 91–119.
6. Mason S. F. (1984) Origins of biomolecular handedness. Nature., 311, 19–23.
7. McClements D. J. (2006) Non-covalent interactions between proteins and polysaccharides. Biotechnol Adv., 24, 621–625.
8. Alkorta I., Grabowski S. J. (2012) Non-covalent interactions. Comput. Theor. Chem., 998, 1
9. Spackman M. A., Jayatilaka D. (2009) Hirshfeld surface analysis. CrystEngComm 11, 19–32. https://doi.org/10.1039/b818330a
10. McKinnon J. J., Jayatilaka D., Spackman M. A., (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun., 3814–3816.
11. Clausen H. F., Chevallier M. S., Spackman M. A., Iversen B. B., (2010) Three new co-crystals of hydroquinone: Crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J Chem., 34, 193–199.
12. Spackman M. A., McKinnon J. J. (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm., 4, 378–392.
13. Kohn W., Becke A. D., Parr R., G. (1996) Density functional theory of electronic structure. J Phys Chem., 100, 12974–12980.
14. Zhao Y., Truhlar D. G., (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput., 3, 289–300.
15. Jasiński R., Mróz K., Kącka A. (2016) Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2,3,3,(4)5-Tetrasubstituted-4-nitroisoxazolidines via 1,3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes. J Heterocycl Chem., 53, 1424–1429.
16. Hawkes K. J., Yates B. F. (2008) The mechanism of the Stetter reaction - A DFT study. European J Org Chem., 5563–5570.
17. Klein E., Lukeš V., Ilčin M. (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys., 336, 51–57.
18. Stanton R. V., Merz K. M., (1994) Density functional study of symmetric proton transfers. J Chem Phys., 101, 6658–6665.
19. Kącka A., Jasiński R. (2017) A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations. Comput Theor Chem., 1104, 37–42.
20. Siadati SA, Vessally E, Hosseinian A, Edjlali L (2016) Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Synth Met 220:606–611.
21. Chattaraj P., K. (Ed.). (2009). Chemical Reactivity Theory: A Density Functional View (1st ed.). CRC Press.
22. Torrent-Sucarrat M., De Proft F., Ayers P., W., Geerlings P. (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys., 12, 1072–1080.
23. Zhu M., Ge F., Zhu R., et al., (2010) A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris. Chemosphere., 80, 46–52.
24. Casida M., E. (2009) Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. THEOCHEM., 914, 3–18
25. Burke K., Werschnik J., Gross E., K., U. (2005) Time-dependent density functional theory: Past, present, and future. J Chem Phys., 123
26. Fabian J. (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dyes & Pigment., 84, 36–53.
27. Garza A. J., Osman O. I., Wazzan N. A., et al (2014) A computational study of the nonlinear optical properties of carbazole derivatives: Theory refines experiment. Theor Chem Acc., 133, 1–8.
28. Nagaraj R., Ramachandran K., Aravinth K., Ranjith S. (2020) Investigation on structural, optical, thermal and mechanical properties of 1, 3-dinitrobenzene (1,3-DNB) single crystal. J Mol Struct, 1205:
29. Chattaraj P. K., Giri S. (2009) Electrophilicity index within a conceptual DFT framework. Annu. Reports Prog. Chem.-Sect. C., 105, 13–39
30. Roy R. K. (2004) On the reliability of global and local electrophilicity descriptors. J Phys Chem A., 108, 4934–4939.
31. Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P. K. (2007) Electrophilicity-based charge transfer descriptor. J Phys Chem A., 111, 1358–1361.
32. Thanikaivelan P., Padmanabhan J., Subramanian V., Ramasami T. (2002) Chemical reactivity and selectivity using Fukui functions: Basis set and population scheme dependence in the framework of B3LYP theory. Theor Chem Acc., 107, 326–335.
33. Oláh J., Alsenoy C. Van, Sannigrahi A. B. (2002) Condensed Fukui functions derived from stockholder charges: Assessment of their performance as local reactivity descriptors. J Phys Chem A, 106, 3885–3890.
34. Glendening E. D., Landis C. R., Weinhold F. (2013) NBO 6.0: Natural bond orbital analysis program. J Comput Chem., 34, 1429–1437.
35. Weinhold F (2012) Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J. Comput. Chem., 33, 2363–2379
36. Freitas M. P., (2013) The anomeric effect on the basis of natural bond orbital analysis. Org Biomol Chem., 11, 2885–2890.
37. Balanay M. P., Kim D. H. (2011) Optical properties of porphyrin analogues for solar cells: An NLO approach. Curr Appl Phys., 11:109–116.
38. Liyanage P. S., De Silva R. M., De Silva K. M. N. (2003) Nonlinear optical (NLO) properties of novel organometallic complexes: High accuracy density functional theory (DFT) calculations. J Mol Struct THEOCHEM., 639, 195–201.
39. Liu C. G., Qiu Y. Q., Sun S. L., et al (2006) DFT study on second-order nonlinear optical properties of a series of mono Schiff-base M(II) (M = Ni, Pd, Pt) complexes. Chem Phys Lett., 429, 570–574.
40. Grimme S. (1998) Molecular Electrostatic Potentials: Concepts and Applications. Zeitschrift für Phys Chemie., 205, 136–137.
2. Kollman P. A. (1977) Noncovalent Interactions. Acc Chem Res., 10, 365–371.
3. Mooibroek T. J., Gamez P., Reedijk J. (2008) Lone pair-π interactions: A new supramolecular bond? CrystEngComm., 10, 1501–1515.
4. Arkas M., Kitsou I., Gkouma A., Papageorgiou M. (2019) The role of hydrogen bonds in the mesomorphic behaviour of supramolecular assemblies organized in dendritic architectures. Liq Cryst Rev., 7, 60–105.
5. Roesky H. W., Andruh M. (2003) The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons. Coord Chem Rev., 236, 91–119.
6. Mason S. F. (1984) Origins of biomolecular handedness. Nature., 311, 19–23.
7. McClements D. J. (2006) Non-covalent interactions between proteins and polysaccharides. Biotechnol Adv., 24, 621–625.
8. Alkorta I., Grabowski S. J. (2012) Non-covalent interactions. Comput. Theor. Chem., 998, 1
9. Spackman M. A., Jayatilaka D. (2009) Hirshfeld surface analysis. CrystEngComm 11, 19–32. https://doi.org/10.1039/b818330a
10. McKinnon J. J., Jayatilaka D., Spackman M. A., (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun., 3814–3816.
11. Clausen H. F., Chevallier M. S., Spackman M. A., Iversen B. B., (2010) Three new co-crystals of hydroquinone: Crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J Chem., 34, 193–199.
12. Spackman M. A., McKinnon J. J. (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm., 4, 378–392.
13. Kohn W., Becke A. D., Parr R., G. (1996) Density functional theory of electronic structure. J Phys Chem., 100, 12974–12980.
14. Zhao Y., Truhlar D. G., (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput., 3, 289–300.
15. Jasiński R., Mróz K., Kącka A. (2016) Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2,3,3,(4)5-Tetrasubstituted-4-nitroisoxazolidines via 1,3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes. J Heterocycl Chem., 53, 1424–1429.
16. Hawkes K. J., Yates B. F. (2008) The mechanism of the Stetter reaction - A DFT study. European J Org Chem., 5563–5570.
17. Klein E., Lukeš V., Ilčin M. (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys., 336, 51–57.
18. Stanton R. V., Merz K. M., (1994) Density functional study of symmetric proton transfers. J Chem Phys., 101, 6658–6665.
19. Kącka A., Jasiński R. (2017) A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations. Comput Theor Chem., 1104, 37–42.
20. Siadati SA, Vessally E, Hosseinian A, Edjlali L (2016) Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Synth Met 220:606–611.
21. Chattaraj P., K. (Ed.). (2009). Chemical Reactivity Theory: A Density Functional View (1st ed.). CRC Press.
22. Torrent-Sucarrat M., De Proft F., Ayers P., W., Geerlings P. (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys., 12, 1072–1080.
23. Zhu M., Ge F., Zhu R., et al., (2010) A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris. Chemosphere., 80, 46–52.
24. Casida M., E. (2009) Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. THEOCHEM., 914, 3–18
25. Burke K., Werschnik J., Gross E., K., U. (2005) Time-dependent density functional theory: Past, present, and future. J Chem Phys., 123
26. Fabian J. (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dyes & Pigment., 84, 36–53.
27. Garza A. J., Osman O. I., Wazzan N. A., et al (2014) A computational study of the nonlinear optical properties of carbazole derivatives: Theory refines experiment. Theor Chem Acc., 133, 1–8.
28. Nagaraj R., Ramachandran K., Aravinth K., Ranjith S. (2020) Investigation on structural, optical, thermal and mechanical properties of 1, 3-dinitrobenzene (1,3-DNB) single crystal. J Mol Struct, 1205:
29. Chattaraj P. K., Giri S. (2009) Electrophilicity index within a conceptual DFT framework. Annu. Reports Prog. Chem.-Sect. C., 105, 13–39
30. Roy R. K. (2004) On the reliability of global and local electrophilicity descriptors. J Phys Chem A., 108, 4934–4939.
31. Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P. K. (2007) Electrophilicity-based charge transfer descriptor. J Phys Chem A., 111, 1358–1361.
32. Thanikaivelan P., Padmanabhan J., Subramanian V., Ramasami T. (2002) Chemical reactivity and selectivity using Fukui functions: Basis set and population scheme dependence in the framework of B3LYP theory. Theor Chem Acc., 107, 326–335.
33. Oláh J., Alsenoy C. Van, Sannigrahi A. B. (2002) Condensed Fukui functions derived from stockholder charges: Assessment of their performance as local reactivity descriptors. J Phys Chem A, 106, 3885–3890.
34. Glendening E. D., Landis C. R., Weinhold F. (2013) NBO 6.0: Natural bond orbital analysis program. J Comput Chem., 34, 1429–1437.
35. Weinhold F (2012) Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J. Comput. Chem., 33, 2363–2379
36. Freitas M. P., (2013) The anomeric effect on the basis of natural bond orbital analysis. Org Biomol Chem., 11, 2885–2890.
37. Balanay M. P., Kim D. H. (2011) Optical properties of porphyrin analogues for solar cells: An NLO approach. Curr Appl Phys., 11:109–116.
38. Liyanage P. S., De Silva R. M., De Silva K. M. N. (2003) Nonlinear optical (NLO) properties of novel organometallic complexes: High accuracy density functional theory (DFT) calculations. J Mol Struct THEOCHEM., 639, 195–201.
39. Liu C. G., Qiu Y. Q., Sun S. L., et al (2006) DFT study on second-order nonlinear optical properties of a series of mono Schiff-base M(II) (M = Ni, Pd, Pt) complexes. Chem Phys Lett., 429, 570–574.
40. Grimme S. (1998) Molecular Electrostatic Potentials: Concepts and Applications. Zeitschrift für Phys Chemie., 205, 136–137.