How to cite this paper
Pesyan, N., Khalafy, J & Rimaz, M. (2013). Mass spectroscopy of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and 3-aryl-7-thioxo-7,8-dihydro-6H-pyrimido[4,5-c]pyridazine-5-ones: Dimers containing water cluster and quasi-covalent hydrogen.Current Chemistry Letters, 2(4), 177-186.
Refrences
1 Brown D. J. in: Katritzky A. R. and Rees C. W. (Ed.), Comprehensive Heterocyclic Chemistry, vol. 3, Pergamon Press, Oxford, 1984, pp. 57-155.
2 Wamhoff H., Dzenis J. and Hirota K. (1992) Uracils: Versatile starting materials in heterocyclic synthesis. Adv. Heterocycl. Chem., 55, 129-259.
3 Hamilton G. A., in: Kaiser E. T. and Kezdy F. J., (Ed.), Progress in Bioorganic Chemistry, vol. 1, Wiley, New York, 1971, pp. 83-157.
4 Sabat M., VanRens J. C., Brugel T. A., Maier J., Laufersweiler M. J., Golebiowski A., De B., Easwaran V., Hsieh L. C., Rosegen J., Berberich S., Suchanek E. and Janusz M. J. (2006) The development of novel 1,2-dihydro-pyrimido[4,5-c]pyridazine based inhibitors of lymphocyte specific kinase (Lck). Bioorg. Med. Chem. Lett., 16, 4257-4261.
5 Altomare C., Cellamare S., Summo L., Catto M., Carotti A., Thull U., Carrupt P.-A., Testa B. and Stoeckli-Evans H. (1998) Inhibition of monoamine oxidase-B by condensed pyridazines and pyrimidines:? Effects of lipophilicity and structure?activity relationships. J. Med. Chem., 41, 3812-3820.
6 Gulevskaya A. V., Serduke O. V., Pozharskii A. F. and Besedin D. V. (2003) 6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: new heterocyclizations based on SNH-methodology. Unexpected formation of the first iso-?-electronic analogue of the still unknown dibenzo[a,o]pycene. Tetrahedron, 59, 7669-7679.
7 Gorunenko V. V., Gulevskaya A. V. and Pozharskii A. F. (2003) Purines, pyrimidines, and related fusedsystems 19. Use of SNH methodology for the synthesis of a new heterocyclic system, pyrrolo[3 & apos; ,2 & apos; :3,4]pyrimido[4,5-c]pyridazine Russian Chem. Bull., 52, 441-446.
8 Wang X.-B., Woo H. K., Kiran B. and Wang L.-S. (2005) Observation of Weak C H???O Hydrogen Bonding to Unactivated Alkanes. Angew. Chem. Intern. Ed. Eng., 44, 4968-4972.
9 Gong H. and Krische M. J. (2005) Duplex molecular strands based on the 3,6-diaminopyridazine hydrogen bonding motif:? amplifying small-molecule self-assembly preferences through preorganization and iterative arrangement of binding residues. J. Am. Chem. Soc., 127, 1719-1725.
10 Azumaya I., Uchida D., Kato T., Yokoyama A., Tanatani A., Takayanagi H. and Yokozawa T. (2004) Absolute helical arrangement of stacked benzene rings: Heterogeneous double-helical interaction comprising a hydrogen-bonding belt and an offset parallel aromatic–aromatic-interaction array. Angew. Chem. Intern. Ed. Eng., 43, 1360-1363.
11 Alfonso I., Burguete M. I. and Luis S. V. (2006) A hydrogen-bonding-modulated molecular rotor:? Environmental effect in the conformational stability of peptidomimetic macrocyclic cyclophanes. J. Org. Chem., 71, 2242-2250.
12 Abraham M. H., Abraham R. J., Byrne J. and Griffiths L. (2006) NMR method for the determination of solute hydrogen bond acidity J. Org. Chem., 71, 3389-3394.
13 Dabbagh A. H., Noroozi Pesyan N., Najafi Chermahini A. R., Patrick B. O. and James B. R. (2007) Diastereoselective formation of 18-membered ring BINOL-hydrogen phosphonatedimers-Quasi-covalent hydrogen bonds? Canadian J. Chem., 85, 466-474.
14 Hwang H. J., Senshama D. K. and El-Sayed M. A. (1989) Unimolecular decomposition of sputtered cesium-cesium iodide (Cs(CsI)n+) clusters: stabilities and evaporation energetic. J. Phys. Chem., 93, 5012-5015.
15 Hwang H. J., Senshama D. K. and El-Sayed M. A. (1989) Kinetic energy release distribution and the mechanism for evaporation of one and two CsI molecules from sputtered Cs(CsI)n+ clusters. Chem. Phys. Lett., 160, 243-249.
16 Garvey J. and Bernstein R. B. (1986) Observation of intramolecular ion-molecule reactions within ionized clusters: the methyl halide systems. J. Phys. Chem., 90, 3577-3583.
17 Garvey J. and Bernstein R. B. (1986) Observation of “intramolecular” ion-molecule reactions within ionized clusters: the methyl fluoride system. Chem. Phys. Lett., 126, 394-398.
18 Garvey J. and Bernstein R. B. (1986) Observation of intramolecular ion-molecule reactions within ionized hetero clusters of methyl chloride-acetone. J. Am. Chem. Soc., 108, 6096-6098.
19 Garvey J. and Bernstein R. B. (1987) Observation of intramolecular ion-molecule reactions within ionized clusters: hetero systems involving methyl halides and oxygen-containing compounds. J. Am. Chem. Soc., 109, 1921-1934.
20 Rose M. E. and Stace A. J. (1987) The chemistry of gas-phase ion clusters. Mass Spectrom., 9, 96-121.
21 Stace A. J. and Shulkla A. K. (1982) Preferential solvation of hydrogen ions in mixed clusters of water, methanol, and ethanol. J. Am. Chem. Soc., 104, 5314-5318.
22 Mark T. D. (1987) Cluster ions: Production, detection and stability. Int. J. Mass Spectrom. Ion Processes, 79, 1-59.
23 de Heer W. A., Knight W. D., Chou M. Y. and Cohen M. L. "Electronic shell structure and metal clusters," in Solid State Physics, vol. 40, ed. Ehrenreich H., Turnbull D. Academic Press, New York, 1987, pp. 93-181.
24 Squires R. R. (1987) Gas-phase transition-metal negative ion chemistry. Chem. Rev., 87, 623-646.
25 Wei S., Tzeng W. B., Keesee R. G. and Castleman A. W. Jr. (1991) Metastable unimolecular and collision-induced dissociation of hydrogen-bonded clusters: evidence for intracluster molecular rearrangement and the structure of solvated protonated complexes. J. Am. Chem. Soc., 113, 1960-1969.
26 Tzeng W. B., Wei S. and Castleman A. W. Jr. (1989) Multiphoton ionization of acetone clusters: metastable unimolecular decomposition of acetone cluster ions and the influence of solvation on intracluster ion-molecule reactions. J. Am. Chem. Soc., 113, 6035-6040.
27 Aviyente V., Iraqi M., Peres T. and Lifshitz C. (1991) Tandem mass spectrometry studies of acetone and acetone/water cluster ions. J. Am. Soc. Mass Spectrom., 2, 113-119.
28 van den Heuvel R. H. and Heck A. J. (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol., 8, 519-526.
29 Lengqvist J., Svensson R., Evergren E., Morgenstern R. and Griffiths W. J. (2004) Observation of an intact noncovalent homotrimer of detergent-solubilized rat microsomal glutathione transferase-1 by electrospray mass spectrometry. J. Biol. Chem., 279, 13311-13316.
30 McCammon M. G., Hernandez H., Sobott F. and Robinson C. V. (2004) Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc., 126, 5950-5951.
31 Huang H.-H., Liao H.-K., Chen Y.-J., Hwang T.-S., Lin Y.-H. and Lin C.-H. (2005) Structural characterization of sialic acid synthase by electrospray mass spectrometry—a tetrameric enzyme composed of dimeric dimers. J. Am. Soc. Mass Spectrom., 16, 324-332.
32 Momin T., Ghosh S. K. and Bhowmick A. (2009) Investigations on mixed water-clusters: Gas phase titration with cyclopentanone and identification of some isomers by time-of-flight mass spectrometry. Int. J. Mass Spectrom., 286, 17-27.
33 Shinohara H., Nagashima U., Tanaka H. and Nishi N. (1985) Magic numbers for water–ammonia binary clusters: Enhanced stability of ion clathrate structures. J. Chem. Phys., 83, 4183-4192.
34 Wei S., Shi Z. and Castleman, A. W. Jr. (1991) Mixed cluster ions as a structure probe: Experimental evidence for clathrate structure of (H2O)20H+ and (H2O)21H+. J. Chem. Phys., 94, 3268-3270.
35 Rimaz M., Khalafy J., Noroozi Pesyan N. and Prager R. H. (2010) A simple one-pot, three component synthesis of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and their sulfur analogues as potential monoamine oxidase inhibitors. Aust. J. Chem., 63, 507-510.
2 Wamhoff H., Dzenis J. and Hirota K. (1992) Uracils: Versatile starting materials in heterocyclic synthesis. Adv. Heterocycl. Chem., 55, 129-259.
3 Hamilton G. A., in: Kaiser E. T. and Kezdy F. J., (Ed.), Progress in Bioorganic Chemistry, vol. 1, Wiley, New York, 1971, pp. 83-157.
4 Sabat M., VanRens J. C., Brugel T. A., Maier J., Laufersweiler M. J., Golebiowski A., De B., Easwaran V., Hsieh L. C., Rosegen J., Berberich S., Suchanek E. and Janusz M. J. (2006) The development of novel 1,2-dihydro-pyrimido[4,5-c]pyridazine based inhibitors of lymphocyte specific kinase (Lck). Bioorg. Med. Chem. Lett., 16, 4257-4261.
5 Altomare C., Cellamare S., Summo L., Catto M., Carotti A., Thull U., Carrupt P.-A., Testa B. and Stoeckli-Evans H. (1998) Inhibition of monoamine oxidase-B by condensed pyridazines and pyrimidines:? Effects of lipophilicity and structure?activity relationships. J. Med. Chem., 41, 3812-3820.
6 Gulevskaya A. V., Serduke O. V., Pozharskii A. F. and Besedin D. V. (2003) 6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: new heterocyclizations based on SNH-methodology. Unexpected formation of the first iso-?-electronic analogue of the still unknown dibenzo[a,o]pycene. Tetrahedron, 59, 7669-7679.
7 Gorunenko V. V., Gulevskaya A. V. and Pozharskii A. F. (2003) Purines, pyrimidines, and related fusedsystems 19. Use of SNH methodology for the synthesis of a new heterocyclic system, pyrrolo[3 & apos; ,2 & apos; :3,4]pyrimido[4,5-c]pyridazine Russian Chem. Bull., 52, 441-446.
8 Wang X.-B., Woo H. K., Kiran B. and Wang L.-S. (2005) Observation of Weak C H???O Hydrogen Bonding to Unactivated Alkanes. Angew. Chem. Intern. Ed. Eng., 44, 4968-4972.
9 Gong H. and Krische M. J. (2005) Duplex molecular strands based on the 3,6-diaminopyridazine hydrogen bonding motif:? amplifying small-molecule self-assembly preferences through preorganization and iterative arrangement of binding residues. J. Am. Chem. Soc., 127, 1719-1725.
10 Azumaya I., Uchida D., Kato T., Yokoyama A., Tanatani A., Takayanagi H. and Yokozawa T. (2004) Absolute helical arrangement of stacked benzene rings: Heterogeneous double-helical interaction comprising a hydrogen-bonding belt and an offset parallel aromatic–aromatic-interaction array. Angew. Chem. Intern. Ed. Eng., 43, 1360-1363.
11 Alfonso I., Burguete M. I. and Luis S. V. (2006) A hydrogen-bonding-modulated molecular rotor:? Environmental effect in the conformational stability of peptidomimetic macrocyclic cyclophanes. J. Org. Chem., 71, 2242-2250.
12 Abraham M. H., Abraham R. J., Byrne J. and Griffiths L. (2006) NMR method for the determination of solute hydrogen bond acidity J. Org. Chem., 71, 3389-3394.
13 Dabbagh A. H., Noroozi Pesyan N., Najafi Chermahini A. R., Patrick B. O. and James B. R. (2007) Diastereoselective formation of 18-membered ring BINOL-hydrogen phosphonatedimers-Quasi-covalent hydrogen bonds? Canadian J. Chem., 85, 466-474.
14 Hwang H. J., Senshama D. K. and El-Sayed M. A. (1989) Unimolecular decomposition of sputtered cesium-cesium iodide (Cs(CsI)n+) clusters: stabilities and evaporation energetic. J. Phys. Chem., 93, 5012-5015.
15 Hwang H. J., Senshama D. K. and El-Sayed M. A. (1989) Kinetic energy release distribution and the mechanism for evaporation of one and two CsI molecules from sputtered Cs(CsI)n+ clusters. Chem. Phys. Lett., 160, 243-249.
16 Garvey J. and Bernstein R. B. (1986) Observation of intramolecular ion-molecule reactions within ionized clusters: the methyl halide systems. J. Phys. Chem., 90, 3577-3583.
17 Garvey J. and Bernstein R. B. (1986) Observation of “intramolecular” ion-molecule reactions within ionized clusters: the methyl fluoride system. Chem. Phys. Lett., 126, 394-398.
18 Garvey J. and Bernstein R. B. (1986) Observation of intramolecular ion-molecule reactions within ionized hetero clusters of methyl chloride-acetone. J. Am. Chem. Soc., 108, 6096-6098.
19 Garvey J. and Bernstein R. B. (1987) Observation of intramolecular ion-molecule reactions within ionized clusters: hetero systems involving methyl halides and oxygen-containing compounds. J. Am. Chem. Soc., 109, 1921-1934.
20 Rose M. E. and Stace A. J. (1987) The chemistry of gas-phase ion clusters. Mass Spectrom., 9, 96-121.
21 Stace A. J. and Shulkla A. K. (1982) Preferential solvation of hydrogen ions in mixed clusters of water, methanol, and ethanol. J. Am. Chem. Soc., 104, 5314-5318.
22 Mark T. D. (1987) Cluster ions: Production, detection and stability. Int. J. Mass Spectrom. Ion Processes, 79, 1-59.
23 de Heer W. A., Knight W. D., Chou M. Y. and Cohen M. L. "Electronic shell structure and metal clusters," in Solid State Physics, vol. 40, ed. Ehrenreich H., Turnbull D. Academic Press, New York, 1987, pp. 93-181.
24 Squires R. R. (1987) Gas-phase transition-metal negative ion chemistry. Chem. Rev., 87, 623-646.
25 Wei S., Tzeng W. B., Keesee R. G. and Castleman A. W. Jr. (1991) Metastable unimolecular and collision-induced dissociation of hydrogen-bonded clusters: evidence for intracluster molecular rearrangement and the structure of solvated protonated complexes. J. Am. Chem. Soc., 113, 1960-1969.
26 Tzeng W. B., Wei S. and Castleman A. W. Jr. (1989) Multiphoton ionization of acetone clusters: metastable unimolecular decomposition of acetone cluster ions and the influence of solvation on intracluster ion-molecule reactions. J. Am. Chem. Soc., 113, 6035-6040.
27 Aviyente V., Iraqi M., Peres T. and Lifshitz C. (1991) Tandem mass spectrometry studies of acetone and acetone/water cluster ions. J. Am. Soc. Mass Spectrom., 2, 113-119.
28 van den Heuvel R. H. and Heck A. J. (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol., 8, 519-526.
29 Lengqvist J., Svensson R., Evergren E., Morgenstern R. and Griffiths W. J. (2004) Observation of an intact noncovalent homotrimer of detergent-solubilized rat microsomal glutathione transferase-1 by electrospray mass spectrometry. J. Biol. Chem., 279, 13311-13316.
30 McCammon M. G., Hernandez H., Sobott F. and Robinson C. V. (2004) Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J. Am. Chem. Soc., 126, 5950-5951.
31 Huang H.-H., Liao H.-K., Chen Y.-J., Hwang T.-S., Lin Y.-H. and Lin C.-H. (2005) Structural characterization of sialic acid synthase by electrospray mass spectrometry—a tetrameric enzyme composed of dimeric dimers. J. Am. Soc. Mass Spectrom., 16, 324-332.
32 Momin T., Ghosh S. K. and Bhowmick A. (2009) Investigations on mixed water-clusters: Gas phase titration with cyclopentanone and identification of some isomers by time-of-flight mass spectrometry. Int. J. Mass Spectrom., 286, 17-27.
33 Shinohara H., Nagashima U., Tanaka H. and Nishi N. (1985) Magic numbers for water–ammonia binary clusters: Enhanced stability of ion clathrate structures. J. Chem. Phys., 83, 4183-4192.
34 Wei S., Shi Z. and Castleman, A. W. Jr. (1991) Mixed cluster ions as a structure probe: Experimental evidence for clathrate structure of (H2O)20H+ and (H2O)21H+. J. Chem. Phys., 94, 3268-3270.
35 Rimaz M., Khalafy J., Noroozi Pesyan N. and Prager R. H. (2010) A simple one-pot, three component synthesis of 3-arylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones and their sulfur analogues as potential monoamine oxidase inhibitors. Aust. J. Chem., 63, 507-510.