How to cite this paper
Krishna, C., Seetharam, K & Satyadev, T. (2024). Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by sulfated tin oxide under mild and solvent-free conditions.Current Chemistry Letters, 13(2), 343-350.
Refrences
1. Sadowski M., and Kula K. (2024) Nitro-functionalized analogues of 1,3-butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett., 13 15-30; DOI: https://doi.org/10.5267/j.ccl.2023.9.003.
2. Ibrahim S. M., Abdelkhalek A. S., Abdel-Raheem S. A. A., Freah, N. E., ElHady N. H., Aidia N. K., Tawfeq N. A., Gomaa N. I., Fouad N. M., Salem H. A., Ibrahim H. A., and Sebaiy M. M. (2024) An overview on 2-indolinone derivatives as anticancer agents. Curr. Chem. Lett., 13 241-254; DOI: https://doi.org/10.5267/j.ccl.2023.6.005.
3. Kras J., Sadowski M., Zawadzinska K., Nagatsky R., Wolinski P., Kula K., and Lapczuk A. (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. SciRad., 2(3) 247-267; DOI: https://doi.org/10.58332/scirad2023v2i3a03.
4. Kula, K., and Sadowski, M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Comp., 59 138-144; DOI: https://doi.org/10.1007/s10593-023-03175-1.
5. Woliński P., Kącka-Zych A., Dziuk B., Ejsmont K., Łapczuk-Krygier A., and Dresler E. (2019) The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT theoretical study. J. Mol. Struct., 1192 27-34; DOI: https://doi.org/10.1016/j.molstruc.2019.04.061.
6. Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek L., Miodowski D., Demchuk O. M., and Jasiński, R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27(4) 593-601; DOI: https://doi.org/10.1016/j.jsps.2019.02.007.
7. Venkataramireddy V., Shankaraiah M., Tejeswara Rao A., Kalyani Ch., Lakshmi Narasu M., Varala R., and Jayashree A. (2016) Synthesis and anti-cancer activity of novel 3- aryl thiophene-2-carbaldehydes and their aryl/heteroaryl chalcone derivatives. Rasayan J. Chem., 9(1) 31-39.
8. Narayana V., Varala R., and Zubaidha P. (2012) SO4-2/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and O-alkylation with O-acetyl compounds. Int. J. Org. Chem., 2(3A) 23342; DOI: https://doi.org/10.4236/ijoc.2012.223039.
9. Varala R., Bollikolla H. B., and Kurmarayuni C. M. (2021) Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Curr. Org. Synth., 18(2) 101-124; DOI: https://doi.org/10.2174/1570179417666200914142229.
10. Bollikolla H. B., Baby R., Mothilal M., Rao G. M., Murthy M. M., and Varala R. (2022) Strategies to synthesis of 1,3,4-oxadiazole derivatives and their biological activities: A mini review. J. Chem. Rev., 4(3) 255-271; DOI: https://doi.org/10.22034/JCR.2022.341351.1170.
11. Varala R. Scope of selective heterocycles from organic and pharmaceutical perspective 2016; ISBN 978-953-51-2503-7; DOI: https://doi.org/10.5772/60890
12. Tyagi A., Yadav N., Khan J., Mondal S., and Hazra C. K. (2022) Brønsted acid-catalysed epoxide ring-opening using amine nucleophiles: A facile access to β-amino alcohols. Chem. Asian J., 17(4) e202200379; DOI: https://doi.org/10.1002/asia.202200379.
13. Bhagavathula D., Boddeti, G., and Venu R. (2017) A brief review on synthesis of β-amino alcohols by ring opening of epoxides. Research & Reviews: Journal of Chemistry 6(2) 27-46.
14. Bhuyan D., Saikia L., and Dutta D. K. (2014) Modified montmorillonite clay catalyzed regioselective ring opening of epoxide with amines and alcohols under solvent free conditions. Appl. Catal. A: Gen. 487 195-201; DOI: http://dx.doi.org/10.1016/j.apcata.2014.09.020.
15. Baskaran T., Joshi A., Kamalakar G., and Sakthivel A. (2016) A solvent free method for preparation of β-amino alcohols by ring opening of epoxides with amines using MCM-22 as a catalyst. Appl. Catal. A: Gen. 524 50-55; DOI:://dx.doi.org/doi:10.1016/j.apcata.2016.05.029.
16. Weng C., Zhang H., Xiong X., Lu X., and Zhou Y. (2014) Evolution of epoxides to synthesize β-amino alcohols. Asian J. Chem., 26(13) 3761-3768; DOI: http://dx.doi.org/10.14233/ajchem.2014.16015.
17. Li D., Wang J., Yu S., Ye S., Zou W., Zhang H., and Chen J. (2020) Highly regioselective ring-opening of epoxides with amines: a metal- and solvent-free protocol for the synthesis of β-amino alcohols. Chem. Commun., 56 2256-2259; DOI: http://dx.doi.org/10.1039/C9CC09048G.
18. Du L-H., Xue M., Yang M-J., Pan Y., Zheng L-Y., Ou Z-M., and Luo X-P. (2020) Ring-opening of epoxides with amines for synthesis of β-amino alcohols in a continuous-flow biocatalysis system. Catalysts 10 1419; DOI: http://dx.doi.org/10.3390/catal10121419.
19. Natongchai W., Khan R. A., Alsalme A., and Shaikh R. R. (2017) Epoxides by amines at room temperature and under solvent-free conditions. Catalysts 7 340; DOI: http://dx.doi.org/10.3390/catal7110340.
20. Chakraborti A. K., Rudrawar S., and Kondaskar A. (2004) Lithium bromide, an inexpensive and efficient catalyst for opening of epoxide rings by amines at room temperature under solvent-free condition. Eur. J. Org. Chem., 3597-3600; DOI: http://dx.doi.org/10.1002/ejoc.200400253.
21. Kamble V. T., and Joshi N. S. (2010) Synthesis of β-amino alcohols by ring opening of epoxides with amines catalyzed by cyanuric chloride under mild and solvent-free conditions. Green Chemistry Letters and Reviews 3(4) 275-281; DOI: http://dx.doi.org/10.1080/17518251003776885.
22. Fallah-Mehrjardi M., Kiasat A. R., and Niknam K. (2018) Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis. J. Iran. Chem. Soc., 15 2033-2081; DOI: https://doi.org/10.1007/s13738-018-1400-5.
23. Adapa S. R., Enugala R., Alam M. M., and Varala R. (2006) Synthesis of β-amino alcohols by regioselective ring opening of epoxides with aromatic amines catalyzed by tin (II) chloride. Lett. Org. Chem., 3 187-190; DOI: https://doi.org/10.2174/157017806775789930.
24. Manjunathan P., Prasanna V., and Shanbhag G. V. (2021) Exploring tailor made Brønsted acid sites in mesopores of tin oxide catalyst for β alkoxy alcohol and amino alcohol syntheses. Sci. Rep., 11 15718; DOI: https://doi.org/10.1038/s41598-021-95089-1.
25. Mirza-Aghayan M., Alvandi F., Tavana M. M., and Boukherroub R. (2017) Graphite oxide catalyzed synthesis of β-amino alcohols by ring-opening of epoxides. Turk. J. Chem., 41 70-79; DOI: https://doi.org/10.3906/kim-1604-45.
26. Shi C., Ren C., Zhang E., Jin H., Yu X., and Wang S. (2016) Synthesis of β-amino alcohols using the tandem reduction and ring-opening reaction of nitroarenes and epoxides. Tetrahedron 72 3839-3843; DOI: http://dx.doi.org/10.1016/j.tet.2016.04.083.
27. Tanaka K., and Toda F. (2000) Solvent-free organic synthesis. Chem. Rev., 100 1025-1074; DOI: https://doi.org/10.1021/cr940089p.
28. Zangade S., and Patil P. (2019) A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 23 2295-2318; DOI: https://doi.org/10.2174/1385272823666191016165532.
29. Dubasi N., and Varala R. (2022) Applications of sulfated tin oxide (STO) in organic synthesis-From 2016 to 2021. Heterocycles 104(5) 843-853; DOI: https://doi.org/10.3987/REV-22-978.
30. Varala R., Narayana V. R., Kulakarni S. R., Khan M., Alwarthan A., and Adil S. F. (2016) Sulfated tin oxide (STO)-Structural properties and application in catalysis: A review. Arabian J. Chem., 9(4) 550-573; DOI: https://doi.org/10.1016/j.arabjc.2016.02.015.
31. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2022) Ultrasound promoted synthesis of 2-amino-4-H-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd., 42(10) 6908-6916; DOI: https://doi.org/10.1080/10406638.2021.1992456.
32. Chandane W., Gajare S., Kagne R., Kukade M., Pawar A., Rashinkar G., and Tamhankar B. (2022) Sulfated tin oxide (SO4-2/SnO2): an efficient heterogeneous solid superacid catalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Res. Chem. Intermed., 48 1439-1456; DOI: https://doi.org/10.1007/s11164-022-04670-4.
33. Ashine F., Balakrishnan S., Kiflie Z., and Tizazu B. Z. (2023) Epoxidation of Argemone mexicana oil with peroxyacetic acid formed in-situ using sulfated tin (IV) oxide catalyst: Characterization; kinetic and thermodynamic analysis. Heliyon 9(1) e12817; DOI: https://doi.org/10.1016/j.heliyon.2023.e12817.
34. Totawar P. R., Varala R., Kotra V., and Pulle J. S. (2023) Synthesis of phthalimide and naphthalimide derived Biginelli compounds and evaluation of their anti-inflammatory and anti-oxidant activities Curr. Chem. Lett., 12 249-256; DOI: https://doi.org/10.5267/j.ccl.2023.1.004.
35. Koduri R. G., Pagadala R., Varala R., and Boodida S. (2021) An effective process for the synthesis of dihydropyridines via SO4−2/SnO2-catalyzed Hantzsch reaction. J. Chin. Chem. Soc., 68(2) 333-337; DOI: https://doi.org/10.1002/jccs.202000264.
36. Koduri R. G., Pagadala R., Boodida S., and Varala R. (2020) SO4−2/SnO2-catalyzed cyclocondensation for the synthesis of fully functionalized pyridines. J. Heterocycl. Chem., 57(2) 923-928; DOI: https://doi.org/10.1002/jhet.3806.
37. Chinta B., Satyadev T. N. V. S. S., and Adilakshmi G. V. (2023) Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted imidazoles. Curr. Chem. Lett., 12 175-184; DOI: https://doi.org/10.5267/j.ccl.2022.8.007.
38. Turlapati S. N. V. S. S., Chinta B., and Gaddaguti V. A. (2023) An efficient zinc acetate dihydrate-catalyzed green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Org. Commun., 16(2) 117-124; DOI: http://doi.org/10.25135/acg.oc.149.2303.2742.