How to cite this paper
Kale, V & Bhopalkar, G. (2024). Optimization of pyridine based Schiff bases: Design, synthesis and determination of anti-inflammatory, antioxidant and antimicrobial activity.Current Chemistry Letters, 13(1), 91-100.
Refrences
1 Chavan S., Zangade S., Vibhute A., and Vibhute Y. (2013) Synthesis and antimicrobial activity of some novel 2‐azetidinones and 4‐thiazolidinones derivatives. Eur. J. Chm., 4(2) 98‐101.
2 El-Sayed R., Althagafi I., Morad M., El-Bahy S. M., and El-Metwaly N. (2021) Synthesis and investigation of heterocyclic systems as pharmacological agents with conformational study and surface activity. J. Mol. Struct., 1240 130597.
3 Sadowski M., Utnicka J., Wojtowicz A., and Kula K. (2023) The global and local Reactivity of C, N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., 12(2) 421-430.
4 Kula K., and Zawadzinska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10(1) 9-16.
5 Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-type [3+2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem.,86(18) 12644-12653.
6 Kula K., and Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1--(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem Heterocycl Compd., 59(3) 138-144.
7 Verma V. A., Saundane A. R., Meti R. S., Shamrao R., and Katkar V. (2020) Synthesis, biological evaluation and docking studies of some new indolyl-pyridine containing thiazolidinone and azetidinone analogs. Polycycl. Aromat. Compd., https://doi.org/10.1080/10406638.2020.1786706.
8 Ceramella J., lacopetta D., Catalano A., Cirillo F., Lappano R., and Sinicropi M. S. (2022) A review on the antimicrobial activity of Schiff bases: data collection and recent studies. J. Antibiot.,11 (2) 191.
9 Reddy P. R., Adivireddy P., and Venkatapuram P. (2014) Synthesis of heteroaryl thiazolidinones and azetidinones under conventional and ultrasonication methods. J. Heterocycl. Chem., 00, 00. https://doi.org/10.1002/jhet.2254.
10 Kirubavathy S. J., Velmurugan R., Karvembu R., Bhuvanesh N.S.P., Enoch I.V.M.V., Selvakumar P.M., Premnath D., and Chitra S. (2017) Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases. J. Mol. Struct., 1127 345-354.
11 Cero´n-Camacho R., Aburto J. A., Montiel L. E., and Martı´nez-Palou R. (2013) Microwave-assisted organic synthesis versus conventional heating. A comparative study for Fisher glycosidation of monosaccharides. C. R. Chimie., 16 427–432.
12 Nain S., Singh R., and Ravichandran S. (2019) Importance of microwave heating in organic synthesis. Adv. J. Chem., A, 2(2), 94-104.
13 Patil P., Bhopalkar G., and Zangade S. (2020) Alumina-K3PO4 solid supported microwave synthesis of 1,3-diaryl-2-propene-1-one derivatives as a prominent antioxidant scavenger. Curr. Microw. Chem., 7 145-156.
14 Koteswra Rao V., Subba Reddy S., Satheesh Krishna B., Reddi Mohan Naidu K., Naga Raju C., and Ghosh S. K. (2010) Synthesis of Schiff’s bases in aqueous medium: a green alternative approach with effective mass yield and high reaction rates. Green Chem. Lett. Rev., 3 217-223.
15 Kumar A., Krishnakumar B., Sobral A. J F N, Subash B., Swaminathan M., and Sankaran K. R. (2016) An efficient rapid and solvent-free synthesis of branched imines using sulfated anatase - titania as a novel solid acid catalyst. Indian J. Chem., 55B 1231-1238.
16 Soliman A. I. A., Sayed M., Elshanawany M. M., Younis O., Ahmed M., Kamal El-Dean A. M., Abdel-Wahab A. A., Wachtveitl J., Braun M., Fatehi P., and Tolba M. S. (2022) Base-Free synthesis and photophysical properties of new Schiff bases containing indole moiety. ACS Omega., 7 10178−10186.
17 Gopalakrishnan M., Sureshkumar P., Kanagarajan V., and Thanusu J. (2007) New environmentally-friendly solvent-free synthesis of imines using calcium oxide under microwave irradiation. Res. Chem. Intermed., 33 541–548.
18 Ali E., Naimi-Jamal M.R., and Dekamin M.G. (2013) Highly efficient and rapid synthesis of imines in the presence of nano-ordered MCM-41-SO3H heterogeneous catalyst. Sci. Iran., 20 (3) 592–597.
19 Ronad P. M., Noolvi M. N., Sakpal S., Dharbhamulla S., and Maddi V. S. (2010) Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl)-benzopyran-2one derivatives. Eur. J. Med. Chem., 45 85-89.
20 Zeng Z., Zhao G., Gao P., Tang H., Chen B., Zhou Z., and Tang C. (2007) Synthesis of a novel chiral Schiff base of (R, R)-11,12-diamino-9,10-dihydro-9,10-ethanonanthracene and its application as ligand in Ti(IV) complex catalyzed asymmetric silylcyanation of aldehydes. Catal. Commun., 8 1443–1446.
21 Padmanabhan P., and Jangle S. N. (2012) Evaluation of in-vitro antiinflammatory activity of herbal preparation, a combination of four medicinal plants. Int. j. basic appl. med. Sci., 2 1 109–116.
22 Elias G., and Rao M. N. (1988) Inhibition of albumin denaturation and anti-inflammatory activity of dehydrozingerone and its analogs. Indian J. Exp. Biol., 26 10 540–542.
23 Lee H. S. (1992) Antioxidative activity of browning reaction product isolated from storage-aged orange juice. J. Agric. Food Chem., 40 4 550–552.
24 Chakraborthy G. S. (2009) Free radical scavenging activity of Costus speciosus leaves. Indian J. Pharm. Educ. Res., 43 96–8.