How to cite this paper
Maruthesh, H., Katagi, M & Nandeshwarappa, B. (2023). A convenient synthesis, characterization and biological evaluation of novel schiff base heterocycles as potential antimicrobial, antitubercular agents and their structural activity relationship.Current Chemistry Letters, 12(4), 759-768.
Refrences
1. Maguire M. P., Sheets K. R., McVety K., Spada A. P., and Zilberstein A. (1994) A new series of PDGF receptor tyrosine kinase inhibitors: 3-Substituted quinoline derivatives. J. Med. Chem., 37 (14) 2129-2137.
2. Malkov A. V., Kabeshov and Bella M. (2007) Vicinal amino alcohols as organocatalysts in asymmetric cross-aldol reaction of ketones: application in the synthesis of convolutamydine A+. Org. Lett., 9 (26) 5473-5476.
3. Shaban M. A. E., Taha M. A. M., and Sharshira E, M. (1991) Synthesis and biological activities of Condensed heterocyclo [n,m-a,b, or c]quinazolines. Adv. in Heter. Chem., 52 1-153.
4. Thomas K. (1999) The pyrano route to 4-hydroxy-2-quinolone and 4-hydroxy- 2-pyridones. IL farmaco., 54 309-315.
5. Girish B., Manjunatha S. K., and Mamledesai S, N. (2012) Synthesis and antimicrobial activity of 4-hydroxy-1methyl/phenyl-3-(substituted anilinoacetyl) quinolin-2(1H)-one. RGUHS J. Pharm. Sci., 02 60-66.
6. Joseph P., Charles B., and Gladys D. (2001) Refomatsky reactions with N-arylpyrrolidine-2-thiones: Synthesis of tricyclic analogues of quinoline antibacterial agents. Tetrahedron., 57 9635 9648.
7. El-Dine S. A., and El-Khawass S. M. (1979) Synthesis of 4-[(2-alkylaryl or arylalkyl) amino-1,3,4-thiadiazol-5-yl]-2-synthesized quinolines and compounds reasonable antifungal and antimicrobial activity. Pharmazie., 34 537-538.
8. Anastasia D., Dionysia B., and Kyriakos, C. P. (2007) Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-infl ammatory agents. J. Med. Chem., 50 2450-2458.
9. Joseph S., and Francis D. (2002) Aryl-2-quinolone derivatives having in vivo and in vitro antitumour activity. J. Med. Chem., 45 2543.
10. Qun L. I., Keith L. W. W., and Weibo. (2005) Design, synthesis, and activity of achiral analogs of 2-quinolones and indoles as non-thiol farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett., 15 2033-2039.
11. Gisela C. M., Mariela B., and Ana M. B. (2006) Evaluation of antiparasitic, antituberculosis and antiangiogenic activities of 3-aminoquinolin-2-one derivatives. J. Chil. Chem. Soc., 51 859-863.
12. Uppar V., Chandrashekharappa S., Basarikatti A. I., Banuprakash G., Mohan M. K., Chougala M., Mudnakudu-Nagaraju K. K., Ningegowda R., and Padmashali B. (2020) Synthesis, antibacterial, and antioxidant studies of 7-amino-3-(4-fluorobenzoyl)indolizine-1-carboxylate derivatives. J. Appl. Pharmaceut. Sci., 10 (02) 077–085.
13. Uppar V., Chandrashekharappa S., Venugopala K. N., Gleiser R. M., Garcia D., Odhav B., Mohan M. K., Deb P. K., Venugopala R., and Padmashali B. (2020) Synthesis and characterization of pyrrolo [1, 2-a] quinoline derivatives for their larvicidal activity against Anopheles arabiensis. Struct. Chem., 17 1-20.
14. Uppar V., Mudnakudu-Nagaraju K. K., Basarikatti A. I., Chougala M., Chandrashekharappa S., Mohan M. K., Banuprakash G., Venugopala K. N., Ninge gowda R., and Padmashali B. (2020) Microwave induced synthesis, and pharmacological properties of novel 1-benzoyl-4-bromopyrrolo [1, 2-a] quinoline-3-carboxylate analogues. Chem. Data. Collect., 25 100316.
15. Nandeshwarappa B. P., Chandrashekharappa S., Prakash G. K., and Prasannakumar J. K. (2020) Efficient synthesis and characterization of novel 2H-[1,4]oxaselenepino[5,6-b]quinolin-3(5H)-ones derivatives. Chem. Data. Collect., 100446.
16. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S. O. (2020) Synthesis and antibacterial evaluation of 3-acetyl-2H-selenopyrano[2,3-b]quinolin-2-ones. Chem. Data. Collect., 100484.
17. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S. O. (2020) Synthesis and characterization of novel ethyl 2-oxo-2H-selenopyrano [2, 3-b] quinoline-3-carboxylates and studied their antimicrobial activities. Chem. Data. Collect., 100466.
18. Nandeshwarappa B. P., Prakash G. K., and Sadashiv S. O. (2020) Synthesis and Antimicrobial Activities of Dihydroazeto[2,3:4,5]seleno[2, 3-b] quinolines. IntechOpen Book, Chapter-1., 1-6.
19. Nandeshwarappa B. P., Chandrashekharappa S., and Raghu Ninge Gowda. (2020)
Selenium-containing heterocycles: Synthetic investigation of some new series 3-(5-mercapto-1, 3, 4-oxadiazol-2-yl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 29 100510.
20. Nandeshwarappa B. P., Chandrashekharappa S., and Prakash G. K., (2020) Nitrogen and selenium containing heterocycles: Part-1: Synthesis of some new substituted 3-(5-(2-oxopropylthio)-1, 3, 4-oxadiazol-2-yl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 29 100534.
21. Nandeshwarappa B. P., Sandeep Chandrashekharappa., and Raghu Ningegowda., (2021) Design and synthesis of novel substituted 3-(2-(1, 3, 4-thiadiazol-2-ylamino) acetyl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 35 100748.
22. Wolfson J., and Hooper D. C. (1989) Fluoroquinolone Antimicrobial agents, Clini Microbio Rev 2., 378-424.
23. Hooper D. C. (1995) Quinolones, In: Mandell, Douglas and Bennett’s principles and practice of infectious diseases. 4th edition, New York: Churchill Livingstone Inc., 364-375.
24. Hooper D. C. (1998) Clinical applications of quinolones. Biochim. Biophys. Acta., 45-61.
25. Hardman G. J., Limbird E. L., Molinoff P. B., and Goodman & Gilman’s. (2002) The Pharmacological Basis of Therapeutics. 9 th edition, McGraw-Hill Publication., 1065.
26. Hosseini S. A., Samadzadeh P., Mirzaahmadi A. A., Khandar A. A., and Mahmoudi G. (2010) Synthesis, crystal structures, spectroscopic and electrochemical studies on Cu(II) and Ni(II) complexes with compartmental nitrogen-oxygen mixed donor ligands. Polyhedron., 80 41.
27. Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023). The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., 12(2) 421-430.
28. Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
29. Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules., 26 (22) 6774.
30. Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., and Jasiński R. (2021) Experimental and theoretical mechanistic study on the thermal decomposition of 3,3-diphenyl-4-(trichloromethyl)-5- nitropyrazoline. Molecules., 26 (5) 1364.
31. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules., 27 8409.
32. Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
33. Schiff H. (1864) Schiff Base Reaction. Justus Liebigs Annalen der Chemie., 131 118-119.
34. Joseph J., Nagashri K., and Rani B. (2013) Synthesis, Characterization and Antimicrobial Activities of Copper Complexes Derived from 4-Aminoantipyrine Derivatives. J. Saudi Chem. Soci., 17 285-294.
35. Rao P. (2019) A Review on Versatile Applications of Novel Schiff Bases and Their Metal Complexes. Lett. in Appl. Nano BioSci., 8 675 681.
36. Rani A., Kumar M., Khare R., and Tuli S. (2015) Schiff Bases as an Antimicrobial Agent: A Review. J. Bio and Chem. Sci., 2 62-91.
37. Hameed A., Al-Rashida., Uroos M., Abid A. S., and Khan S. M. (2017) Schiff Bases in Medicinal Chemistry: A Patent Review (2010-2015). Expert Opinion on Therapeutic Patents., 27 63-79.
38. Chen J., Gu B., LeBoeuf E. J., Pan H., Dai S., Tumer M., Koksal H., Serin S., and Digrak M. (1999) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Transit. Met. Chem., 24 13-17.
39. Walsh O. M., Meegan M. J., Prendergast R. M., Nakib T. A. (1996) Synthesis of 3-acetoxyazetidin- 2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity. Eur. J.Med. Chem., 31 989-1000.
40. Da Silva C. M., Da Silva C. L., Modolo L. V., Alves R. B., De Resende M. A., Martins C. V. B., and De Fatima A. (2011) Schiff bases: a short review of their antimicrobial activities. J. Adv. Res., 1-8.
41. Pandeya S. N., Sriram D., Nath G., and DeClercq E. (1999) Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4' chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur. J. Pharmacol., 9 25-31.
42. Zhang B., Luo H., Xu Q., Lin L., and Zhang B. (2017) Antitumor activity of a Transthiosemicarbazone schiff base palladium (II) complex on human gastric adenocarcinoma cells. Oncotarget., 8 13620-1363.
43. Nandeshwarappa B. P., Manjappa S., and Kishore B. (2011) A novel approach toward the synthesis of azetidinones derivatives. J. Sul. Chem., 32 (5) 475-481.
44. Manjunatha S. K., Jennifer F., Shivalingrao M., Sujatha M. L., Rekha L., and Girish B. (2019) INNOSC Theranostics and Pharm. Sci., 2 14-18.
45. Praveen Kumar. C. H., Manjunatha S. K., and Nandeshwarappa B. P. (2022) Chem. Data. Collect., 42 100955.
2. Malkov A. V., Kabeshov and Bella M. (2007) Vicinal amino alcohols as organocatalysts in asymmetric cross-aldol reaction of ketones: application in the synthesis of convolutamydine A+. Org. Lett., 9 (26) 5473-5476.
3. Shaban M. A. E., Taha M. A. M., and Sharshira E, M. (1991) Synthesis and biological activities of Condensed heterocyclo [n,m-a,b, or c]quinazolines. Adv. in Heter. Chem., 52 1-153.
4. Thomas K. (1999) The pyrano route to 4-hydroxy-2-quinolone and 4-hydroxy- 2-pyridones. IL farmaco., 54 309-315.
5. Girish B., Manjunatha S. K., and Mamledesai S, N. (2012) Synthesis and antimicrobial activity of 4-hydroxy-1methyl/phenyl-3-(substituted anilinoacetyl) quinolin-2(1H)-one. RGUHS J. Pharm. Sci., 02 60-66.
6. Joseph P., Charles B., and Gladys D. (2001) Refomatsky reactions with N-arylpyrrolidine-2-thiones: Synthesis of tricyclic analogues of quinoline antibacterial agents. Tetrahedron., 57 9635 9648.
7. El-Dine S. A., and El-Khawass S. M. (1979) Synthesis of 4-[(2-alkylaryl or arylalkyl) amino-1,3,4-thiadiazol-5-yl]-2-synthesized quinolines and compounds reasonable antifungal and antimicrobial activity. Pharmazie., 34 537-538.
8. Anastasia D., Dionysia B., and Kyriakos, C. P. (2007) Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-infl ammatory agents. J. Med. Chem., 50 2450-2458.
9. Joseph S., and Francis D. (2002) Aryl-2-quinolone derivatives having in vivo and in vitro antitumour activity. J. Med. Chem., 45 2543.
10. Qun L. I., Keith L. W. W., and Weibo. (2005) Design, synthesis, and activity of achiral analogs of 2-quinolones and indoles as non-thiol farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett., 15 2033-2039.
11. Gisela C. M., Mariela B., and Ana M. B. (2006) Evaluation of antiparasitic, antituberculosis and antiangiogenic activities of 3-aminoquinolin-2-one derivatives. J. Chil. Chem. Soc., 51 859-863.
12. Uppar V., Chandrashekharappa S., Basarikatti A. I., Banuprakash G., Mohan M. K., Chougala M., Mudnakudu-Nagaraju K. K., Ningegowda R., and Padmashali B. (2020) Synthesis, antibacterial, and antioxidant studies of 7-amino-3-(4-fluorobenzoyl)indolizine-1-carboxylate derivatives. J. Appl. Pharmaceut. Sci., 10 (02) 077–085.
13. Uppar V., Chandrashekharappa S., Venugopala K. N., Gleiser R. M., Garcia D., Odhav B., Mohan M. K., Deb P. K., Venugopala R., and Padmashali B. (2020) Synthesis and characterization of pyrrolo [1, 2-a] quinoline derivatives for their larvicidal activity against Anopheles arabiensis. Struct. Chem., 17 1-20.
14. Uppar V., Mudnakudu-Nagaraju K. K., Basarikatti A. I., Chougala M., Chandrashekharappa S., Mohan M. K., Banuprakash G., Venugopala K. N., Ninge gowda R., and Padmashali B. (2020) Microwave induced synthesis, and pharmacological properties of novel 1-benzoyl-4-bromopyrrolo [1, 2-a] quinoline-3-carboxylate analogues. Chem. Data. Collect., 25 100316.
15. Nandeshwarappa B. P., Chandrashekharappa S., Prakash G. K., and Prasannakumar J. K. (2020) Efficient synthesis and characterization of novel 2H-[1,4]oxaselenepino[5,6-b]quinolin-3(5H)-ones derivatives. Chem. Data. Collect., 100446.
16. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S. O. (2020) Synthesis and antibacterial evaluation of 3-acetyl-2H-selenopyrano[2,3-b]quinolin-2-ones. Chem. Data. Collect., 100484.
17. Nandeshwarappa B. P., Chandrashekharappa S., and Sadashiv S. O. (2020) Synthesis and characterization of novel ethyl 2-oxo-2H-selenopyrano [2, 3-b] quinoline-3-carboxylates and studied their antimicrobial activities. Chem. Data. Collect., 100466.
18. Nandeshwarappa B. P., Prakash G. K., and Sadashiv S. O. (2020) Synthesis and Antimicrobial Activities of Dihydroazeto[2,3:4,5]seleno[2, 3-b] quinolines. IntechOpen Book, Chapter-1., 1-6.
19. Nandeshwarappa B. P., Chandrashekharappa S., and Raghu Ninge Gowda. (2020)
Selenium-containing heterocycles: Synthetic investigation of some new series 3-(5-mercapto-1, 3, 4-oxadiazol-2-yl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 29 100510.
20. Nandeshwarappa B. P., Chandrashekharappa S., and Prakash G. K., (2020) Nitrogen and selenium containing heterocycles: Part-1: Synthesis of some new substituted 3-(5-(2-oxopropylthio)-1, 3, 4-oxadiazol-2-yl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 29 100534.
21. Nandeshwarappa B. P., Sandeep Chandrashekharappa., and Raghu Ningegowda., (2021) Design and synthesis of novel substituted 3-(2-(1, 3, 4-thiadiazol-2-ylamino) acetyl)-2H-selenopyrano [2, 3-b] quinolin-2-ones. Chem. Data. Collect., 35 100748.
22. Wolfson J., and Hooper D. C. (1989) Fluoroquinolone Antimicrobial agents, Clini Microbio Rev 2., 378-424.
23. Hooper D. C. (1995) Quinolones, In: Mandell, Douglas and Bennett’s principles and practice of infectious diseases. 4th edition, New York: Churchill Livingstone Inc., 364-375.
24. Hooper D. C. (1998) Clinical applications of quinolones. Biochim. Biophys. Acta., 45-61.
25. Hardman G. J., Limbird E. L., Molinoff P. B., and Goodman & Gilman’s. (2002) The Pharmacological Basis of Therapeutics. 9 th edition, McGraw-Hill Publication., 1065.
26. Hosseini S. A., Samadzadeh P., Mirzaahmadi A. A., Khandar A. A., and Mahmoudi G. (2010) Synthesis, crystal structures, spectroscopic and electrochemical studies on Cu(II) and Ni(II) complexes with compartmental nitrogen-oxygen mixed donor ligands. Polyhedron., 80 41.
27. Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023). The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., 12(2) 421-430.
28. Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
29. Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules., 26 (22) 6774.
30. Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., and Jasiński R. (2021) Experimental and theoretical mechanistic study on the thermal decomposition of 3,3-diphenyl-4-(trichloromethyl)-5- nitropyrazoline. Molecules., 26 (5) 1364.
31. Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules., 27 8409.
32. Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
33. Schiff H. (1864) Schiff Base Reaction. Justus Liebigs Annalen der Chemie., 131 118-119.
34. Joseph J., Nagashri K., and Rani B. (2013) Synthesis, Characterization and Antimicrobial Activities of Copper Complexes Derived from 4-Aminoantipyrine Derivatives. J. Saudi Chem. Soci., 17 285-294.
35. Rao P. (2019) A Review on Versatile Applications of Novel Schiff Bases and Their Metal Complexes. Lett. in Appl. Nano BioSci., 8 675 681.
36. Rani A., Kumar M., Khare R., and Tuli S. (2015) Schiff Bases as an Antimicrobial Agent: A Review. J. Bio and Chem. Sci., 2 62-91.
37. Hameed A., Al-Rashida., Uroos M., Abid A. S., and Khan S. M. (2017) Schiff Bases in Medicinal Chemistry: A Patent Review (2010-2015). Expert Opinion on Therapeutic Patents., 27 63-79.
38. Chen J., Gu B., LeBoeuf E. J., Pan H., Dai S., Tumer M., Koksal H., Serin S., and Digrak M. (1999) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Transit. Met. Chem., 24 13-17.
39. Walsh O. M., Meegan M. J., Prendergast R. M., Nakib T. A. (1996) Synthesis of 3-acetoxyazetidin- 2-ones and 3-hydroxyazetidin-2-ones with antifungal and antibacterial activity. Eur. J.Med. Chem., 31 989-1000.
40. Da Silva C. M., Da Silva C. L., Modolo L. V., Alves R. B., De Resende M. A., Martins C. V. B., and De Fatima A. (2011) Schiff bases: a short review of their antimicrobial activities. J. Adv. Res., 1-8.
41. Pandeya S. N., Sriram D., Nath G., and DeClercq E. (1999) Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4' chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur. J. Pharmacol., 9 25-31.
42. Zhang B., Luo H., Xu Q., Lin L., and Zhang B. (2017) Antitumor activity of a Transthiosemicarbazone schiff base palladium (II) complex on human gastric adenocarcinoma cells. Oncotarget., 8 13620-1363.
43. Nandeshwarappa B. P., Manjappa S., and Kishore B. (2011) A novel approach toward the synthesis of azetidinones derivatives. J. Sul. Chem., 32 (5) 475-481.
44. Manjunatha S. K., Jennifer F., Shivalingrao M., Sujatha M. L., Rekha L., and Girish B. (2019) INNOSC Theranostics and Pharm. Sci., 2 14-18.
45. Praveen Kumar. C. H., Manjunatha S. K., and Nandeshwarappa B. P. (2022) Chem. Data. Collect., 42 100955.