How to cite this paper
Gomaa, H., Aleem, A., Salman, A & El-Sayed, I. (2024). New biocidal hybrids bearing acridine and aminophosphonate Scaffolds against different bacterial pathogens.Current Chemistry Letters, 13(1), 81-90.
Refrences
1 Murray C.J., Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C., Bisignano C., Rao P., and Wool E.J.T.L. (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 399, 629-655.
2 Baliwada A., Rajagopal K., Varakumar P., Raman K., and Byran G. (2022) A Review on Acridines as Antiproliferative Agents. Mini Rev Med Chem, 22 (21) 2769-2798.
3 Kožurková M., Sabolová D., and Kristian P. (2017) a review on acridinylthioureas and its derivatives: biological and cytotoxic activity. Journal of Applied Toxicology, 37 (10) 1132-1139.
4 Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023) The global and local Reactivity of C, N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Current Chemistry Letters, 12, 421–430.
5 Kula K., and Zawadzińskaa K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Current Chemistry Letters, 10, 9–16.
6 Zawadzinska K., Ríos-Gutiérrez M., Kula K., Wolinski P., Mirosław B., Krawczyk T., and Jasinski R. (2021) The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3+2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules, 26 (22) 6774.
7 Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzinska K., Demchuk O. M., Gaurav G.K, Wróblewska A., and Jasiński R. (2022) On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules, 27 (23) 8409.
8 Kula K. and Sadowski M. (2023) Regio- and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59 (3) 138-144.
9 El-Tantawy A. I., Elmongy E. I., Elsaeed S. M., Abdel Aleem A. A. H., Binsuwaidan R., Eisa W. H., Salman A. U., Elharony N. E., and Attia N. F. (2023) Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics, 15 (6) 1666.
10 Elsherbiny D. A., Abdelgawad A. M., El-Naggar M. E., El-Sherbiny R. A., El-Rafie M. H., and El-Sayed I. E. T. (2020) Synthesis, antimicrobial activity, and sustainable release of novel α-aminophosphonate derivatives loaded carrageenan cryogel. International Journal of Biological Macromolecules, 163, 96-107.
11 Boshta N. M., Elgamal E. A., and El-Sayed I. E. T. (2018) Bioactive amide and α-aminophosphonate inhibitors for methicillin-resistant Staphylococcus aureus (MRSA). Monatshefte für Chemie - Chemical Monthly, 149, 2349-2358.
12 Ravi N., Venkatanarayana M., Sharathbabu H., and Babu K. R.. (2021) Synthesis of novel α-aminophosphonates by methanesulfonic acid catalyzed Kabachnik–Fields reaction. Phosphorus, Sulfur, and Silicon and the Related Elements, 196 (11) 1018-1024.
13 Hamed M., El Gokha A., El-Tantawy A. I., and Sabry, M. (2015) Synthesis and Antimicrobial Activity of Novel α- Aminophosphonates Bearing Pyrazoloquinoxaline Moiety. International Journal of Pharmaceutical Sciences Review and Research, 34 (33) 205-213.
14 Danne A., Akolkar S., Deshmukh T., Siddiqui M., and Shingate B. (2019) One-pot facile synthesis of novel 1,2,3-triazole-appended α-aminophosphonates. Journal of the Iranian Chemical Society, 16, 953-961.
15 Sreelakshmi P, Maheshwara R. N., Santhisudha S., Mohan G., and Saichaithanya N. (2019) Nano Sb2O3 catalyzed green synthesis, cytotoxic activity, and molecular docking study of novel α-aminophosphonates. Medicinal Chemistry Research, 28, 528-544.
16 El Boraey H. A. L., El Gokha A. A., and El-Sayed I. E. T. (2015) Transition metal complexes of α-aminophosphonates Part I: synthesis, spectroscopic characterization, and in vitro anticancer activity of copper(II) complexes of α-aminophosphonates. Medicinal Chemistry Research, 24, 2142-2153.
17 El Gokha A. A., Ahmed A. A. S., Abdelwahed N. A. M., and El Sayed I. E. T. (2016) Synthesis and Antimicrobial Activity of Novel mono- and bis-α-Aminophosphonate Derivatives. International Journal of Pharmaceutical Sciences Review and Research, 36 (2) 35-39.
18 El Gokha A. A., Ghanim I. M. S., Abdel Megeed A. El. S., El-khabiry S., and El-Sayed I. E. T. (2016) Synthesis and antibacterial activity of novel α-aminophosphonates bearing a quinoline moiety. IJSPR, 7, 181-189.
19 Xu Y., Yan K., Song B., Xu G., and Yang S. (2006) Synthesis and Antiviral Bioactivities of α-Aminophosphonates Containing Alkoxyethyl Moieties. Molecules, 11 (6), 666-676.
20 Pietrusiewicz K. M., Szwaczko K., Mirosław B., Dybała I., Jasinski R., and Demchuk O. M. (2019) New Rigid Polycyclic Bis(phosphane) for Asymmetric Catalysis. Molecules, 24, 571.
21 Demchuk O. M., Jasinski R., Strzelecka D., Dziuba K., Kula K., Chrzanowski J., and Krasowska D. (2018) A clean and simple method for deprotection of phosphines from borane complexes. Pure and Applied Chemistry, 90 (1) 49–62.
22 Jasiński R., Demchuk O. M., and Babyuk D. (2017) A Quantum-Chemical DFT Approach to Elucidation of the Chirality Transfer Mechanism of the Enantioselective Suzuki–Miyaura Cross-Coupling Reaction. Journal of Chemistry, 3617527.
23 Demchuk O. M., and Jasiński R. (2016) Organophosphorus ligands: Recent developments in design, synthesis, and application in environmentally benign catalysis. Phosphorus Sulfur and Silicon and the Related Elements, 191, 245-253.
24 Ahmed A. A., Awad H. M., El-Sayed I. E. T., and El Gokha A. A. (2020) Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds. J Iran Chem Soc, 17, 1211–1221.
25 Ozturk S., and Ercisli S. (2006) Chemical composition and in vitro antibacterial activity of Seseli libanotis. World J. Microbiol. Biotechnol, 22, 261–265.
26 Daoud A., Malika D., Bakari S., Hfaiedh N., Mnafgui K., Kadri A., and Gharsallah N. (2015) Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arab. J. Chem., 12, 3075–3086.
27 Eloff J. (1998) A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Med. 64, 711–713.
28 Petersen P., Wang T., Dushin R., Bradford P. A. (2004) Comparative In Vitro Activities of AC98-6446, a Novel Semisynthetic Glycopeptide Derivative of the Natural Product Mannopeptimycin α, and Other Antimicrobial Agents against Gram-Positive Clinical Isolates. Agents Chemother., 48, 739–746.
29 Datta A., Ghoshdastidar S., and Singh M. (2011) Antimicrobial Property of Piper betel Leaf against Clinical Isolates of Bacteria. Int. J. Pharm. Sci., 2, 104–109.