How to cite this paper
Sultana, S., Hossain, M., Islam, M & Kawsar, S. (2024). Antifungal potential of mannopyranoside derivatives through computational and molecular docking studies against Candida albicans 1IYL and 1AI9 proteins.Current Chemistry Letters, 13(1), 1-14.
Refrences
1. Nogueira C. M., Parmanhan B. R., Farias P. P., Corrêa A. G. (2009) An Importância Crescente Dos Carboidratos Em Química Medicinal. Rev. Virt. Quím., 1 149–159.
2. Sears P., Wong C. H. (1996) Intervention of Carbohydrate Recognition by Proteins and Nucleic Acids. Proc. Natl. Acad. Sci. USA, 93 12086–12093.
3. Seeberger P. H., Werz D. B. (2007) Synthesis and medical applications of oligosaccharides. Nature, 446 1046–1051.
4. Varki A. et al. (Eds.) (2015) Essentials of Glycobiology. Cold Spring Harbor Laboratory Press.
5. Chen S., Fukuda M. (2006) Cell type-specific roles of carbohydrates in tumor metastasis. Meth. Enzymol., 416 371–380.
6. Kawsar S. M. A., Islam M., Jesmin S., Manchur M. A., Hasan I., Rajia S. (2018) Evaluation of the antimicrobial activity and cytotoxic effect of some uridine derivatives. Int. J. Biosci., 12 211–219.
7. Kawsar S. M. A., Hamida A. A., Sheikh A. U., Hossain M. K., Shagir A. C., Sanaullah A. F. M., Manchur M. A., Imtiaj H., Ogawa Y., Fujii Y., et al. (2015) Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities. Int. J. Org. Chem., 5 232–245.
8. Shagir A. C., Bhuiyan M. M. R., Ozeki Y., Kawsar S. M. A. (2016) Simple and rapid synthesis of some nucleoside derivatives: Structural and spectral characterization. Curr. Chem. Lett., 5 83–92.
9. Rana K. M., Ferdous J., Hosen A., Kawsar S. M. A. (2020) Ribose moieties acylation and characterization of some cytidine analogs. J. Sib. Fed. Univ. Chem., 13 465–478.
10. Bulbul M. Z. H., Chowdhury T. S., Misbah M. M. H., Ferdous J., Dey S., Hasan I., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents. Pharmacia, 68 23–34.
11. Arifuzzaman M., Islam M. M., Rahman M. M., Mohammad A. R., Kawsar S. M. A. (2018) An efficient approach to the synthesis of thymidine derivatives containing various acyl groups: Characterization and antibacterial activities. ACTA Pharm. Sci., 56 7–22.
12. Maowa J., Alam A., Rana K. M., Hosen A., Dey S., Hasan I., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. Ovidius. Univ. Ann. Chem., 32 6–21.
13. Alam A., Hosen M. A., Hosen A., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Synthesis, characterization, and molecular docking against a receptor protein FimH of Escherichia coli (4XO8) of thymidine derivatives. J. Mex. Chem. Soc., 65 256–276.
14. Rana K. M., Maowa J., Alam A., Hosen A., Dey S., Hasan I., Fujii Y., Ozeki Y., Kawsar S. M. A. .(2021) In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. In Silico Pharmacol., 9 42.
15. Farhana Y., Amin M. R., Hosen A., Kawsar S. M. A. (2021) Bromobenzoylation of methyl α-D-mannopyranoside: Synthesis and spectral characterization. J. Sib. Fed. Univ. Chem., 14 171–183.
16. Devi S. R., Jesmin S., Rahman M., Manchur M. A., Fujii Y., Kanaly R. A., Ozeki Y., Kawsar S. M. A. (2019) Microbial efficacy and two-step synthesis of uridine derivatives with spectral characterization. ACTA Pharm. Sci., 57 47–68.
17. Alam A., Hosen M. A., Islam M., Ferdous J., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Synthesis, Antibacterial and cytotoxicity assessment of modified uridine molecules. Curr. Adv. Chem. Biochem., 6 114–129.
18. Kawsar S. M. A., Kumar A. (2021) Computational investigation of methyl α-D-glucopyranoside derivatives as inhibitor against bacteria, fungi and COVID-19 (SARS-2). J. Chill. Chem. Soc., 66 5206–5214.
19. Mirajul M. I., Arifuzzaman M., Monjur M. R., Rahman A., Kawsar S. M. A. (2019) Novel methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives: Synthesis, structural characterization and evaluation of antibacterial activities. Hacet. J. Biol. Chem., 47 153–164.
20. Kawsar S. M. A., Faruk M. O., Rahman M. S., Fujii Y., Ozeki Y. (2014) Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives. Sci. Pharm., 82 (1) 1–20.
21. Kawsar S. M. A., Hasan T., Chowdhury S. A., Islam M. M., Hossain M. K., Mansur M. A. (2013) Synthesis, spectroscopic characterization and in vitro antibacterial screening of some D-glucose derivatives. Int. J. Pure App Chem., 8 125–135.
22. Misbah M. M. H., Ferdous J., Bulbul M. Z. H., Chowdhury T. S., Dey S., Hasan I., Kawsar S. M. A. (2020) Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters. Int. J. Biosci., 16 299–309.
23. Maowa J., Hosen M. A., Alam A., Rana K. M., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Pharmacokinetics and molecular docking studies of uridine derivatives as SARS-CoV-2 Mpro inhibitors. Phys. Chem. Res., 9 385–312.
24. Hosen M. A., Alam A., Islam M., Fujii Y., Ozeki Y., Kawsar S. M. A. (2021) Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesin of Escherichia coli. Bulg. Chem. Commun., 53 327–342.
25. Kawsar S. M. A., Kumer A., Munia N. S., Hosen M. A., Chakma U., Akash S. (2022) Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Org. Commun., 15 1-20.
26. Farhana Y., Amin M. R., Hosen M. A., Bulbul M. Z. H., Dey S., Kawsar S. M. A. (2021) Monosaccharide derivatives: Synthesis, antimicrobial, PASS, antiviral, and molecular docking studies against SARS-CoV-2 mpro inhibitors. J. Cellul. Chem. Technol., 55 477–499.
27. Kawsar S. M. A., Bulbul M. Z. H., Hosen M. A., Ferdous J., Misbah M. M. H., Chowdhury T. S. (2021) Thermochemical, DFT study, physicochemical, molecular docking and ADMET predictions of some modified uridine derivatives. Int. J. New Chem., 8 88–110.
28. Kawsar S. M. A., Hosen M. A., Chowdhury T. S., Rana K. M., Fujii Y., Ozeki Y. (2021) Thermochemical, PASS, Molecular Docking, Drug-Likeness and In Silico ADMET Prediction of Cytidine Derivatives Against HIV-1 Reverse Transcriptase. Rev. de Chim., 72 159–178.
29. Kawsar S. M. A., Hosen M. A. (2020) An optimization and pharmacokinetic studies of some thymidine derivatives. Turk. Comp. Theo. Chem., 4 59–66.
30. Kawsar S. M. A., Almalki F. A., Hadd T. B., Hamid L., Khan M. A. R., Hosen M. A., Shafi M., Abdelouahed A., Maideen N. M. P., Fariba H., et al. (2022) Potential antifungal activity of novel carbohydrate derivatives validated by POM, molecular docking and molecular dynamic simulations analyses. Mol. Simul., 48 1–16.
31. Amin M. R., Yasmin F., Hosen M. A., Dey S., Mahmud S., Saleh M. A., Hasan I., Fujii Y., Yamada M., Ozeki Y., et al. (2021) Synthesis, antimicrobial, anticancer, PASS, molecular docking, molecular dynamic simulations and pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs. Molecules, 26 1–25.
32. Amin M. R., Yasmin F., Dey S., Mahmud S., Saleh M. A., Emran T. B., Hasan I., Rajia S., Ogawa Y., Fujii Y., et al. (2021) Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconj. J., 39 261-290.
33. Alam A., Rana K. M., Hosen M. A., Dey S., Bezbaruah B., Kawsar S. M. A. (2022) Modified thymidine derivatives as potential inhibitors of SARS-CoV: PASS, in vitro antimicrobial, physicochemical and molecular docking studies. Phys. Chem. Res., 10 391–409.
34. Islam S., Hosen M. A., Ahmad S., Qamar M. T., Dey S., Hasan I., Fujii Y., Ozeki Y., Kawsar S. M. A. (2022) Synthesis, antimicrobial, anticancer activities, PASS prediction, molecular docking, molecular dynamics and pharmacokinetic studies of designed methyl α-D-glucopyranoside esters. J. Mol. Struct., 1260C 132761.
35. Kawsar S. M. A., Hosen M. A., El Bakri Y., Ahmad S., Sopi T. A., Goumri-Said S. (2022) In silico approach for potential antimicrobial agents through antiviral, molecular docking, molecular dynamics, pharmacokinetic and bioactivity predictions of galactopyranoside derivatives. Arab J. Basic Appl. Sci., 29 99–112.
36. Kawsar S. M. A., Ouassaf M., Hosen M. A., Chtita S., Qais F. A., Belaidi S. (2022) Physicochemical, ADMET, molecular docking and molecular dynamics simulations against Bacillus subtilis HmoB for antibacterial potentiality of methyl α-D-glucopyranoside derivatives. Philipp. J. Sci., 151 1393–1417.
37. Kawsar S. M. A., Hosen M. A., Fujii Y., et al. (2020) Thermochemical, DFT, molecular docking and pharmacokinetic studies of methyl β-D-galactopyranoside esters. J. Comput. Chem. Mol. Model., 4 452–462.
38. Kawsar S. M. A., Matsumoto R., Fujii Y., et al. (2011) Cytotoxicity and glycan-binding profile of α-D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). The Protein J., 30 509–519.
39. Kabir A. K. M. S., Kawsar S. M. A., Bhuiyan M. M. R., et al. (2009) Antimicrobial screening of some derivatives of methyl α-D-glucopyranoside. Pak. J. Sci. Ind. Res., 52 138–142.
40. Kabir A. K. M. S., Kawsar S. M. A.,Bhuiyan M. M. R., et al. (2004) Biological evaluation of some mannopyranoside derivatives. Bull. Pure Appl. Sci., 23 83–91.
41. Kabir A. K. M. S., Kawsar S. M. A.,Bhuiyan M. M. R., et al. (2008) Biological evaluation of some octanoyl derivatives of methyl 4,6-O-cyclohexylidene--D-glucopyranoside. Chittagong Univ. J. Biol. Sci., 3 53–64.
42. Fujii Y., Kawsar S. M. A., Matsumoto R., et al. (2011) A-D-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycophingolipids. Comp. Biochem. Physiol., 158B 30–37.
43. Sim F., St-Amant A., Papai I., Salahub D. R. (1992) Gaussian Density Functional Calculations on Hydrogen-Bonded systems. J. Am. Chem. Soc., 114(11), 4391–4400.
44. Heinz H., Suter U. W. (2004) Atomic Charges for Classical Simulations of Polar Systems. J. Phys. Chem., 108, 18341–18352.
45. Cohen N., Benson S. W. (1993) Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev., 93 2419–2438.
46. Pearson R. G. (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad Sci., 83, 8440-8441
47. Saravanan S., Balachandran V. (2014) Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-di-chlorophenylisocyanate. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 120 351–364.
48. Hosen M. A., Munia N. S., Al-Ghorbani M., Baashen M., Almalki F. A., Hadda T. B., Ali F., Mahmud S., Saleh M. A., Laaroussi H., Kawsar S. M. A. (2022) Synthesis, antimicrobial, molecular docking, and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg. Chem., 125, 105850.
49. Politzer P., Murray J. S. (1991) Molecular electrostatic potentials and chemical reactivity. Rev. Comput. Chem., 2 273–312.
50. Shen J., Cheng F., Xu Y., Li W., Tang Y. (2010) Estimation of ADME Properties with Substructure Pattern Recognition. J. Chem. Inf. Model., 50 (6) 1034-1041
51. Wang Z., Yang H., Wu Z., et al. (2018) In Silico Prediction of Blood‒Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods. Chem. Med. Chem., 13 (20) 2189-2201.
52. Chen L., Li Y., Zhao Q., Peng H., Hou T. (2011) ADME Evaluation in Drug Discovery. 10. Predictions of P-Glycoprotein Inhibitors Using Recursive Partitioning and Naive Bayesian Classification Techniques. Mol. Pharm., 8 (3) 889-900.
53. Cheng F., Yu Y., Shen J., et al. (2011) Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers. J. Chem. Inf. Model., 51 (5) 996-1011.
54. Sun L., Zhang C., Chen Y., et al. (2015) In silico prediction of chemical aquatic toxicity with chemical category approaches and substructural alerts. Toxicol Res (Camb)., 4 (2) 452-463.
55. Zhu H., Martin TM, Ye L., Sedykh A., Young DM, Tropsha A. (2009) Quantitative Structure−Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure. Chem Res Toxicol., 22 (12) 1913-1921.
56. Wang J., Krudy G., Hou T., Zhang W., Holland G., Xu X. (2007) Development of Reliable Aqueous Solubility Models and Their Application in Druglike Analysis. J. Chem. Inf. Model., 47 (4) 1395-1404.
57. Huang F.D., Chen J, Lin M, Keating MT, Sanguinetti MC. (2001) Long-QT Syndrome-Associated Missense Mutations in the Pore Helix of the HERG Potassium Channel. Circulation., 104 (9) 1071-1075.
58. Hirata K., Uchida T., Nakajima Y., Maekawa T., Mizuki T. (2008) Chemical Synthesis and Cytotoxicity of Neo-Glycolipids; Rare Sugar-Glycerol-Lipid Compounds. Heliyon, 4, e00861.
59. Zawadzińska K. & Gostyński B. (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Sci. Rad., 2 25–46.
60. Mandloi D., Dabade S. J., Bajaj A. V & Atre H. (2020) Molecular Docking and QSAR studies for Modeling Antifungal Activity of Triazine Analogs against Therapeutic Target NMT of Candida albicans. Int. J. Pharm. Sci. Drug Res., 13 140–146.
61. Kawsar S. M. A. (2023) Galactopyranoside Derivatives as Potential Antibacterial Therapeutic Drugs for Pharmaceutical Uses. in Novel Aspect. Chem. Biochem., 6 167–192.
62. Ahmmed F., Islam A., Mukhrish Y., et al. (2022) Efficient Antibacterial/Antifungal Activities: Synthesis, Molecular Docking, Molecular Dynamics, Pharmacokinetic, and Binding Free Energy of Galactopyranoside Derivatives. Molecules 28 219.
63. Liu X., Wang X. J. (2020) Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genom., 7 119–121.
64. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., et al. (2009) Gaussian 09. Gaussian Inc, Wallingford, CT.
65. Becke A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38 (6) 3098-3100.
66. Lee C., Yang W., Parr R. G. (1988) Development of the colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37 (2) 785-789.
67. Koopmans T. (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica., 1 (1) 104-113.
68. Kumaresan S., Senthilkumar V., Stephen A., Balakumar B. S. (2015) GC‒MS Analysis and PASS-Assisted Prediction of Biological Activity Spectra of Extract of Phomopsis sp. solated From Andrographis paniculata. World J. Pharm. Res., 4 1035–1053.
69. Filimonov D. A., Lagunin A. A., Gloriozova T. A., Rudik A. V. et al (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heter. Comp. Russian Orig., 50 (3) 444–457.
70. Yang H., Lou C., Sun L., Li J., Cai Y. (2019) AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35 (6) 1067–1069.