How to cite this paper
Islam, N., Islam, M., Rahman, M & Matin, M. (2021). Octyl 6-O-hexanoyl-β-D-glucopyranosides: Synthesis, PASS, antibacterial, in silico ADMET, and DFT studies.Current Chemistry Letters, 10(4), 413-426.
Refrences
1. Plat T., and Linhardt R. J. (2001) Syntheses and applications of sucrose-based esters. J. Surfactants Deterg., 4 415–421.
2. Lucarini S., Fagioli L., Campana R., Cole H., Duranti A., Baffone W., Vllasalium D., and Casettari L. (2016) Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm., 107 88–96.
3. Zhao L., Zhang H. Y., Hao T. Y., and Li S. R. (2015) In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem., 187 370–377.
4. Matin M. M., Bhattacharjee S. C., Chakraborty P., and Alam M. S. (2019) Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydr. Res., 485 107812.
5. Shao S-. Y., Shi Y-. G., Wu Y., Bian L-. Q., Zhu Y-. J., Huang X-. Y., and et al. (2018) Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria. Molecules, 23 e1118.
6. Dhavale D. D., Matin M. M., Sharma T., and Sabharwal S. G. (2003) N-Hydroxyethyl-piperidine and –pyrrolidine homoazasugars: preparation and evaluation of glycosidase inhibitory activity. Bioorg. Med. Chem., 11 (15) 3295–3305.
7. Matin M. M., and Iqbal M. Z. (2021) Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: Electron. J. Chem., 13 (1) 19–27.
8. Tarahomjoo S., and Alemzadeh I. (2003) Surfactant production by an enzymatic method. Enzyme Microb. Technol., 33 33–37.
9. Szüts A., Pallagi E., Regdon G., Aigner Z., and Révész P. S-. (2007) Study of thermal behaviour of sugar esters, Int. J. Pharm., 336 199–207.
10. A. B. M., Dave Zaitlin D., and Wagner G. J. (2016) Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species. Phytochem., 130 218–227.
11. Kobayashi T., Takahashi T., and Adachi S. (2012) Synthesis of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose by lipase-catalyzed esterification in an organic solvent. J. Oleo Sci., 61 (2) 75–79.
12. Allen D. K., and Tao B. Y. (1999) Carbohydrate-alkyl ester derivatives as biosurfactants. J. Surfactants Deterg., 2 383–390.
13. Matin M. M., Chakraborty P., Alam M. S., Islam M. M., and Hanee U. (2020) Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydr. Res., 496 108130.
14. Matin M. M., Bhuiyan M. M. H., Kabir E., Sanaullah A. F. M., Rahman M. A., Hossain M. E., and Uzzaman M. (2019) Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. J. Mol. Struct., 1195 189–197.
15. Marshall D. L., and Bullermann L. B. (1994) Antimicrobial properties of sucrose fatty acid esters, in: Akoh C. C., and Swanson B. G. (Eds) Carbohydrate Polymers as Fat Substitutes. Marcel Dekker (New York), 149–167.
16. Kabara J. J., Conley A. J., Swieczkowski D. M., Ismail I. A., Jie M. L. K., and Gunstone F. D. (1973) Antimicrobial action of isomeric fatty acids on group A Streptococcus. J. Med. Chem., 16 1060–1063.
17. Kumar N., and Goel N. (2019) Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 24 00370.
18. Matin M. M., Islam N., Siddika A., and Bhattacharjee S. C. (2021) Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. J. Turkish Chem. Soc. Sect. A: Chem., 8 (1) 363–374.
19. Matin M. M., Bhuiyan M. M. H., Azad A. K. M. S., and Akther N. (2017) Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. Curr. Chem. Lett., 6 (1) 31–40.
20. Yang L-. J., Yang X-. D., Yang S., Zhao J-. F., Zhang H-. B., and Li L. (2006) Two new benzoyl esters of glucose from Lagotis yunnanensis. Chem. of Nat. Compd., 42 (6) 649–651.
21. Matin M. M., Bhuiyan M. M. H., Azad A. K. M. S., and Rashid M. H. O. (2015) Synthesis of 6-O-stearoyl-1,2-O-isopropylidene-α-D-gluco-furanose derivatives for antimicrobial evaluation. J. Phys. Sci., 26 (1) 1–12.
22. Lee K. P., and Kim H. K. (2016) Antibacterial effect of fructose laurate synthesized by Candidaantarctica B lipase-mediated transesterification. J. Microbiol. Biotechnol., 26 (9) 1579–1585.
23. Pan H., and Lundgren L. N. (1994) Rhododendrol glycosides and phenyl glucoside esters from inner bark of Betula pubescens. Phytochem., 36 (1) 79–83.
24. Yakimchuk O. D., Kotomin A. A., Petel’skii M. B., and Naumov V. N. (2004) Cleaning action and surfactant properties of alkyl glucosides. Russ. J. Appl. Chem., 77 2001–2005.
25. Matin M. M., Uzzaman M., Chowdhury S. A., and Bhuiyan M. M. H. (2020) In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn. DOI: 10.1080/07391102.2020.1850358.
26. https://www.mfc.co.jp/english/appli.htm
27. Matin M. M., Hasan M. S., Uzzaman M., Bhuiyan M. M. H., Kibria S. M., Hossain M. E., and Roshid M. H. O. (2020) Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. J. Mol. Struct., 1222 128821.
28. Matin M. M., Bhuiyan M. M. H., Debnath D. C., and Manchur M. A. (2013) Synthesis and comparative antimicrobial studies of some acylated D-glucofuranose and D-glucopyranose derivatives. Int. J. Biosci., 3 (8) 279–287.
29. Takada H., Takashima Y., Yokotsuka A., and Soyama Y. (2000) Eyelash Cosmetic Composition Containing Sucrose Fatty Acid Esters, U.S. Patent 6,024,950.
30. Chowdhury, S. A., Chakraborty, P., Kawsar, S. M.A., Bhuiyan, M. M. H., and Matin, M. M. (2018) Regioselective acylation, PASS prediction and antimicrobial properties of some protected glucopyranosides. J. Bangladesh Chem. Soc., 30 (1), 1–9.
31. Jacob J. N., and Tazawa M. J. (2012) Glucose–aspirin: Synthesis and in vitro anti-cancer activity studies, Bioorg. Med. Chem. Lett., 22 3168–3171.
32. Wilson A. E., Matel H. D., and Tian L. (2016) Glucose ester enabled acylation in plant specialized metabolism, Phytochem. Rev., 15 1057–1074.
33. Baron C., and Thompson T. E. (1975) Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoylphosphatidyl choline. Biochim. Biophys. Acta, 352 276–285.
34. Lin J. T., Riedel S., and Kinne R. (1979) The use of octyl β-D-glucoside as detergent for HOG kidney brush border membrane. Biochim. Biophys. Acta, 557 179–187.
35. Dimakos V., and Taylor M. S. (2018) Site-selective functionalization of hydroxyl groups in carbohydrate derivatives. Chem. Rev., 118 (23) 11457–11517.
36. Sugihara J. M. (1953) Relative reactivities of hydroxyl groups of carbohydrates. Adv. Carbohydr. Chem., 8 1−44.
37. Haines A. H. (1976) Relative reactivities of hydroxyl groups in carbohydrates. Adv. Carbohydr. Chem. Biochem., 33 11−109.
38. Lawandi J., Rocheleau S., and Moitessier N. (2016) Regioselective acylation, alkylation, silylation and glycosylation of monosaccharides. Tetrahedron, 72 6283−6319.
39. Jäger M., and Minnaard A. J. (2016) Regioselective modification of unprotected glycosides. Chem. Commun., 52 656−664.
40. Matin M. M., Nath A. R., Saad O., Bhuiyan M. M. H., Kadir F. A., Hamid S. B. A., Alhadi A. A., Ali M. E., and Yehye W. A. (2016) Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives. Int. J. Mol. Sci., 17 (9) 1412.
41. Dhavale D. D., and Matin M. M. (2004) Selective sulfonylation of 4-C-hyroxymethyl-β-L-threo-pento-1,4-furanose: Synthesis of bicyclic diazasugars. Tetrahedron, 60 (19) 4275–4281.
42. Matin M. M., and Ibrahim M. (2010) Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. J. Appl. Sci. Res., 6 (10) 1527–1532.
43. Matin M. M., and Chakraborty P. (2020) Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. J. Appl. Sci. Process Eng., 7 (2) 572–586.
44. Ali M., Karim M. H., and Matin M. M. (2021) Efficient synthetic technique, PASS predication, and ADMET studies of acylated n-octyl glucopyranosides. J Appl. Sci. Process Eng., 8 (1) 648–659.
45. Kabir A. K. M. S., and Matin M. M. (1994) Regioselective acylation of a derivative of L-rhamonse using the dibutyltin oxide method. J. Bangladesh Chem. Soc., 7 (1) 73–79.
46. Kabir A. K. M. S., and Matin M. M. (1997) Regioselective monoacylation of a derivative of L-rhamnose. J. Bangladesh Acad. Sci., 21 (1) 83–88.
47. Staron J., Dabrowski J. M., Cichon E., and Guzik M. (2018) Lactose esters: synthesis and biotechnological applications. Crit. Rev. Biotechnol., 38 245–58.
48. Richel A., Laurent P., Wathelet B., Wathelet J. P., and Paquot M. (2011) Microwave-assisted conversion of carbohydrates. State of the art and outlook. C. R. Chim., 14 (2-3) 224–234.
49. Jiang L., and Chan T-. H. (1998) Regioselective acylation of hexopyranosides with pivaloyl chloride. J. Org. Chem., 63 6035−6038.
50. Matin M. M. (2006) Synthesis of some silyl protected 1,4-galactonolactone derivatives. J. Appl. Sci. Res., 2 (10) 753–756.
51. Islam F., Rahman M. R., and Matin M. M. (2021) The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Comp. Theo. Chem., 5 (1) 39–50.
52. Clinical and Laboratory Standards Institute (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria: approved standard, 8th Ed. CLSI document, Approved Standard M11-A8, Wayne.
53. Han Y., Zhang J., Hu C. Q., Zhang X., Ma B., and Zhang P. (2019) In silico ADME and toxicity prediction of Ceftazidime and its impurities. Front. Pharmacol., 10 434.
54. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., et al. (2013) Gaussian 09W, Revision D.01. Gaussian, Inc., Wallingford CT.
2. Lucarini S., Fagioli L., Campana R., Cole H., Duranti A., Baffone W., Vllasalium D., and Casettari L. (2016) Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm., 107 88–96.
3. Zhao L., Zhang H. Y., Hao T. Y., and Li S. R. (2015) In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem., 187 370–377.
4. Matin M. M., Bhattacharjee S. C., Chakraborty P., and Alam M. S. (2019) Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydr. Res., 485 107812.
5. Shao S-. Y., Shi Y-. G., Wu Y., Bian L-. Q., Zhu Y-. J., Huang X-. Y., and et al. (2018) Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria. Molecules, 23 e1118.
6. Dhavale D. D., Matin M. M., Sharma T., and Sabharwal S. G. (2003) N-Hydroxyethyl-piperidine and –pyrrolidine homoazasugars: preparation and evaluation of glycosidase inhibitory activity. Bioorg. Med. Chem., 11 (15) 3295–3305.
7. Matin M. M., and Iqbal M. Z. (2021) Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: Electron. J. Chem., 13 (1) 19–27.
8. Tarahomjoo S., and Alemzadeh I. (2003) Surfactant production by an enzymatic method. Enzyme Microb. Technol., 33 33–37.
9. Szüts A., Pallagi E., Regdon G., Aigner Z., and Révész P. S-. (2007) Study of thermal behaviour of sugar esters, Int. J. Pharm., 336 199–207.
10. A. B. M., Dave Zaitlin D., and Wagner G. J. (2016) Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species. Phytochem., 130 218–227.
11. Kobayashi T., Takahashi T., and Adachi S. (2012) Synthesis of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose by lipase-catalyzed esterification in an organic solvent. J. Oleo Sci., 61 (2) 75–79.
12. Allen D. K., and Tao B. Y. (1999) Carbohydrate-alkyl ester derivatives as biosurfactants. J. Surfactants Deterg., 2 383–390.
13. Matin M. M., Chakraborty P., Alam M. S., Islam M. M., and Hanee U. (2020) Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydr. Res., 496 108130.
14. Matin M. M., Bhuiyan M. M. H., Kabir E., Sanaullah A. F. M., Rahman M. A., Hossain M. E., and Uzzaman M. (2019) Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. J. Mol. Struct., 1195 189–197.
15. Marshall D. L., and Bullermann L. B. (1994) Antimicrobial properties of sucrose fatty acid esters, in: Akoh C. C., and Swanson B. G. (Eds) Carbohydrate Polymers as Fat Substitutes. Marcel Dekker (New York), 149–167.
16. Kabara J. J., Conley A. J., Swieczkowski D. M., Ismail I. A., Jie M. L. K., and Gunstone F. D. (1973) Antimicrobial action of isomeric fatty acids on group A Streptococcus. J. Med. Chem., 16 1060–1063.
17. Kumar N., and Goel N. (2019) Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 24 00370.
18. Matin M. M., Islam N., Siddika A., and Bhattacharjee S. C. (2021) Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. J. Turkish Chem. Soc. Sect. A: Chem., 8 (1) 363–374.
19. Matin M. M., Bhuiyan M. M. H., Azad A. K. M. S., and Akther N. (2017) Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. Curr. Chem. Lett., 6 (1) 31–40.
20. Yang L-. J., Yang X-. D., Yang S., Zhao J-. F., Zhang H-. B., and Li L. (2006) Two new benzoyl esters of glucose from Lagotis yunnanensis. Chem. of Nat. Compd., 42 (6) 649–651.
21. Matin M. M., Bhuiyan M. M. H., Azad A. K. M. S., and Rashid M. H. O. (2015) Synthesis of 6-O-stearoyl-1,2-O-isopropylidene-α-D-gluco-furanose derivatives for antimicrobial evaluation. J. Phys. Sci., 26 (1) 1–12.
22. Lee K. P., and Kim H. K. (2016) Antibacterial effect of fructose laurate synthesized by Candidaantarctica B lipase-mediated transesterification. J. Microbiol. Biotechnol., 26 (9) 1579–1585.
23. Pan H., and Lundgren L. N. (1994) Rhododendrol glycosides and phenyl glucoside esters from inner bark of Betula pubescens. Phytochem., 36 (1) 79–83.
24. Yakimchuk O. D., Kotomin A. A., Petel’skii M. B., and Naumov V. N. (2004) Cleaning action and surfactant properties of alkyl glucosides. Russ. J. Appl. Chem., 77 2001–2005.
25. Matin M. M., Uzzaman M., Chowdhury S. A., and Bhuiyan M. M. H. (2020) In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn. DOI: 10.1080/07391102.2020.1850358.
26. https://www.mfc.co.jp/english/appli.htm
27. Matin M. M., Hasan M. S., Uzzaman M., Bhuiyan M. M. H., Kibria S. M., Hossain M. E., and Roshid M. H. O. (2020) Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. J. Mol. Struct., 1222 128821.
28. Matin M. M., Bhuiyan M. M. H., Debnath D. C., and Manchur M. A. (2013) Synthesis and comparative antimicrobial studies of some acylated D-glucofuranose and D-glucopyranose derivatives. Int. J. Biosci., 3 (8) 279–287.
29. Takada H., Takashima Y., Yokotsuka A., and Soyama Y. (2000) Eyelash Cosmetic Composition Containing Sucrose Fatty Acid Esters, U.S. Patent 6,024,950.
30. Chowdhury, S. A., Chakraborty, P., Kawsar, S. M.A., Bhuiyan, M. M. H., and Matin, M. M. (2018) Regioselective acylation, PASS prediction and antimicrobial properties of some protected glucopyranosides. J. Bangladesh Chem. Soc., 30 (1), 1–9.
31. Jacob J. N., and Tazawa M. J. (2012) Glucose–aspirin: Synthesis and in vitro anti-cancer activity studies, Bioorg. Med. Chem. Lett., 22 3168–3171.
32. Wilson A. E., Matel H. D., and Tian L. (2016) Glucose ester enabled acylation in plant specialized metabolism, Phytochem. Rev., 15 1057–1074.
33. Baron C., and Thompson T. E. (1975) Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoylphosphatidyl choline. Biochim. Biophys. Acta, 352 276–285.
34. Lin J. T., Riedel S., and Kinne R. (1979) The use of octyl β-D-glucoside as detergent for HOG kidney brush border membrane. Biochim. Biophys. Acta, 557 179–187.
35. Dimakos V., and Taylor M. S. (2018) Site-selective functionalization of hydroxyl groups in carbohydrate derivatives. Chem. Rev., 118 (23) 11457–11517.
36. Sugihara J. M. (1953) Relative reactivities of hydroxyl groups of carbohydrates. Adv. Carbohydr. Chem., 8 1−44.
37. Haines A. H. (1976) Relative reactivities of hydroxyl groups in carbohydrates. Adv. Carbohydr. Chem. Biochem., 33 11−109.
38. Lawandi J., Rocheleau S., and Moitessier N. (2016) Regioselective acylation, alkylation, silylation and glycosylation of monosaccharides. Tetrahedron, 72 6283−6319.
39. Jäger M., and Minnaard A. J. (2016) Regioselective modification of unprotected glycosides. Chem. Commun., 52 656−664.
40. Matin M. M., Nath A. R., Saad O., Bhuiyan M. M. H., Kadir F. A., Hamid S. B. A., Alhadi A. A., Ali M. E., and Yehye W. A. (2016) Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives. Int. J. Mol. Sci., 17 (9) 1412.
41. Dhavale D. D., and Matin M. M. (2004) Selective sulfonylation of 4-C-hyroxymethyl-β-L-threo-pento-1,4-furanose: Synthesis of bicyclic diazasugars. Tetrahedron, 60 (19) 4275–4281.
42. Matin M. M., and Ibrahim M. (2010) Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. J. Appl. Sci. Res., 6 (10) 1527–1532.
43. Matin M. M., and Chakraborty P. (2020) Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. J. Appl. Sci. Process Eng., 7 (2) 572–586.
44. Ali M., Karim M. H., and Matin M. M. (2021) Efficient synthetic technique, PASS predication, and ADMET studies of acylated n-octyl glucopyranosides. J Appl. Sci. Process Eng., 8 (1) 648–659.
45. Kabir A. K. M. S., and Matin M. M. (1994) Regioselective acylation of a derivative of L-rhamonse using the dibutyltin oxide method. J. Bangladesh Chem. Soc., 7 (1) 73–79.
46. Kabir A. K. M. S., and Matin M. M. (1997) Regioselective monoacylation of a derivative of L-rhamnose. J. Bangladesh Acad. Sci., 21 (1) 83–88.
47. Staron J., Dabrowski J. M., Cichon E., and Guzik M. (2018) Lactose esters: synthesis and biotechnological applications. Crit. Rev. Biotechnol., 38 245–58.
48. Richel A., Laurent P., Wathelet B., Wathelet J. P., and Paquot M. (2011) Microwave-assisted conversion of carbohydrates. State of the art and outlook. C. R. Chim., 14 (2-3) 224–234.
49. Jiang L., and Chan T-. H. (1998) Regioselective acylation of hexopyranosides with pivaloyl chloride. J. Org. Chem., 63 6035−6038.
50. Matin M. M. (2006) Synthesis of some silyl protected 1,4-galactonolactone derivatives. J. Appl. Sci. Res., 2 (10) 753–756.
51. Islam F., Rahman M. R., and Matin M. M. (2021) The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Comp. Theo. Chem., 5 (1) 39–50.
52. Clinical and Laboratory Standards Institute (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria: approved standard, 8th Ed. CLSI document, Approved Standard M11-A8, Wayne.
53. Han Y., Zhang J., Hu C. Q., Zhang X., Ma B., and Zhang P. (2019) In silico ADME and toxicity prediction of Ceftazidime and its impurities. Front. Pharmacol., 10 434.
54. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., et al. (2013) Gaussian 09W, Revision D.01. Gaussian, Inc., Wallingford CT.