How to cite this paper
Radhi, E., Ali, K & Hussein, F. (2023). Batch and merging-zone flow injection methods for determination of tetracycline hydrochloride.Current Chemistry Letters, 12(4), 677-684.
Refrences
1 Hassan, B., and Hadi, H. (2022) Development of continuous flow injection analysis method for determination of oxymetazoline and vancomycin hydrochloride in pharmaceutical preparations. Bull. Chem. Soc. Ethiop., 36 (2) 303-313.
2 Santos, A.M., Silva, T.A., Vicentini, F.C., and Fatibello-Filho, O. (2020) Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arabian J. Chem., 13 (1) 335-345.
3 Belal, F., Hadi, H., and Jamal, M. (2019) Reversed flow-injection method for estimation of chlorpromazine in pharmaceuticals and urine samples using charge-transfer complexation. Bull. Chem. Soc. Ethiop., 33 (1) 11-20.
4 Hameedi, I.T. (2021) Determination of tetracycline hydrochloride in pure and pharmaceutical samples via oxidative coupling reaction. Mater. Today: Proc., 42 2953-2958.
5 Khaleel, R.M., and Mohammed, D.H. (2020) Spectrophotometric Determination of tetracycline hydrochloride Using 2, 4–dinitrophenyl hydrazine as Coupling Reagent. J. Phys.: Conf. Ser., 1664 (1) 012084.
6 Cao, J., Lai, L., Lai, B., Yao, G., Chen, X., and Song, L. (2019) Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism. Chem. Eng. J., 364 45-56.
7 Guerra, P., Kim, M., Shah, A., Alaee, M., and Smyth, S.A. (2014) Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ., 473 235-243.
8 Leichtweis, J., Vieira, Y., Welter, N., Silvestri, S., Dotto, G.L., and Carissimi, E. (2022) A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. Prot., 160 25-40.
9 Yoshizawa, N., Usui, M., Fukuda, A., Asai, T., Higuchi, H., Okamoto, E., Seki, K., Takada, H., and Tamura, Y. (2020) Manure compost is a potential source of tetracycline-resistant Escherichia coli and tetracycline resistance genes in Japanese farms. Antibiotics, 9 (2) 76.
10 Chen, Y., Su, J.Q., Zhang, J., Li, P., Chen, H., Zhang, B., Gin, K.Y.H., and He, Y. (2019) High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Res., 149 179-189.
11 Gissawong, N., Boonchiangma, S., Mukdasai, S., and Srijaranai, S. (2019) Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines. Talanta, 200 203-211.
12 Pang, Y.H., Lv, Z.Y., Sun, J.C., Yang, C., and Shen, X.F. (2021) Collaborative compounding of metal–organic frameworks for dispersive solid-phase extraction HPLC–MS/MS determination of tetracyclines in honey. Food Chem., 355 129411.
13 Lanjwani, M.F., Altunay, N., and Tuzen, M. (2023) Preparation of fatty acid-based ternary deep eutectic solvents: Application for determination of tetracycline residue in water, honey and milk samples by using vortex-assisted microextraction. Food Chem., 400 134085.
14 Saenjum, C., Pattapong, N., Aunsakol, T., Pattananandecha, T., Apichai, S., Murakami, H., Grupan, K., and Teshima, N. (2022) High sensitivity spectrophotometric determination of tetracycline with zirconium chelation by employing simultaneous injection effective mixing analysis (SIEMA): Tetracycline residue in honey. J. Food Compos. Anal., 105 104215.
15 Faria, L.V., Lima, A.P., Araújo, F.M., Lisboa, T.P., Matos, M.A., Munoz, R.A., and Matos, R.C. (2019) High-throughput amperometric determination of tetracycline residues in milk and quality control of pharmaceutical formulations: flow-injection versus batch-injection analysis. Anal. Methods, 11 (41) 5328-5336.
16 Rodríguez, M.P., Pezza, H.R., and Pezza, L. (2016) Simple and clean determination of tetracyclines by flow injection analysis. Spectrochim. Acta, Part A, 153 386-392.
17 Jin, L., Qiao, J., Chen, J., Xu, N., and Wu, M. (2020) Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta, 208 120404.
18 Kuang, G., Wang, C., Song, L., Zhang, G., Yang, Y., and Fu, Y. (2023) Novel electrochemiluminescence luminophore based on flower-like binuclear coordination polymer for high-sensitivity detection of tetracycline in food products. Food Chem., 403 134376.
19 Wang, T., Mei, Q., Tao, Z., Wu, H., Zhao, M., Wang, S., and Liu, Y. (2020) A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens. Bioelectron., 148 111791.
20 Yao, R., Deng, B., Li, Z., Xie, L., Li, J., Tuo, K., Fan, C., and Pu, S. (2023) A covalent organic framework rich in lanthanide Eu3+ binding sites for sensitive and selective determination of tetracycline. Dyes Pigm., 213 111159.
21 Weng, X., Huang, J., Ye, H., Xu, H., Cai, D., and Wang, D. (2022) A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode. Anal. Methods, 14 (31) 3000-3010.
22 Xu, H., Zhang, D., Weng, X., Wang, D., and Cai, D. (2022) Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline. Microchim. Acta, 189 (5) 201.
23 Aljeboree, A.M., Abbas, A.S., Abdulrazzak, F.H., Abd Alrazzak, N., and Alkaim, A.F. (2021) Role of Selenium dioxide in Spectrophotometric determination of Tetracycline in pure and pharmaceutical formulations. J. Phys.: Conf. Ser., 1999 (1) 012157.
24 J Al-Ashow, R., and S Othman, N. (2012) Spectrophotometric determination of tetracycline by coupling with diazotised 4-aminoantipyrine in presence of cetylpyridinium chloride. Rafidain journal of science, 23 (3) 72-84.
25 Ali, R.J., Hawezy, H.J.S., and Abdullah, M.S. (2018) Spectrophotometric determination of tetracycline hydrochloride through coupling with sulphanilic acid. Diyala Journal of Medicine, 15 (2) 15-22.
2 Santos, A.M., Silva, T.A., Vicentini, F.C., and Fatibello-Filho, O. (2020) Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arabian J. Chem., 13 (1) 335-345.
3 Belal, F., Hadi, H., and Jamal, M. (2019) Reversed flow-injection method for estimation of chlorpromazine in pharmaceuticals and urine samples using charge-transfer complexation. Bull. Chem. Soc. Ethiop., 33 (1) 11-20.
4 Hameedi, I.T. (2021) Determination of tetracycline hydrochloride in pure and pharmaceutical samples via oxidative coupling reaction. Mater. Today: Proc., 42 2953-2958.
5 Khaleel, R.M., and Mohammed, D.H. (2020) Spectrophotometric Determination of tetracycline hydrochloride Using 2, 4–dinitrophenyl hydrazine as Coupling Reagent. J. Phys.: Conf. Ser., 1664 (1) 012084.
6 Cao, J., Lai, L., Lai, B., Yao, G., Chen, X., and Song, L. (2019) Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism. Chem. Eng. J., 364 45-56.
7 Guerra, P., Kim, M., Shah, A., Alaee, M., and Smyth, S.A. (2014) Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ., 473 235-243.
8 Leichtweis, J., Vieira, Y., Welter, N., Silvestri, S., Dotto, G.L., and Carissimi, E. (2022) A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. Prot., 160 25-40.
9 Yoshizawa, N., Usui, M., Fukuda, A., Asai, T., Higuchi, H., Okamoto, E., Seki, K., Takada, H., and Tamura, Y. (2020) Manure compost is a potential source of tetracycline-resistant Escherichia coli and tetracycline resistance genes in Japanese farms. Antibiotics, 9 (2) 76.
10 Chen, Y., Su, J.Q., Zhang, J., Li, P., Chen, H., Zhang, B., Gin, K.Y.H., and He, Y. (2019) High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Res., 149 179-189.
11 Gissawong, N., Boonchiangma, S., Mukdasai, S., and Srijaranai, S. (2019) Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines. Talanta, 200 203-211.
12 Pang, Y.H., Lv, Z.Y., Sun, J.C., Yang, C., and Shen, X.F. (2021) Collaborative compounding of metal–organic frameworks for dispersive solid-phase extraction HPLC–MS/MS determination of tetracyclines in honey. Food Chem., 355 129411.
13 Lanjwani, M.F., Altunay, N., and Tuzen, M. (2023) Preparation of fatty acid-based ternary deep eutectic solvents: Application for determination of tetracycline residue in water, honey and milk samples by using vortex-assisted microextraction. Food Chem., 400 134085.
14 Saenjum, C., Pattapong, N., Aunsakol, T., Pattananandecha, T., Apichai, S., Murakami, H., Grupan, K., and Teshima, N. (2022) High sensitivity spectrophotometric determination of tetracycline with zirconium chelation by employing simultaneous injection effective mixing analysis (SIEMA): Tetracycline residue in honey. J. Food Compos. Anal., 105 104215.
15 Faria, L.V., Lima, A.P., Araújo, F.M., Lisboa, T.P., Matos, M.A., Munoz, R.A., and Matos, R.C. (2019) High-throughput amperometric determination of tetracycline residues in milk and quality control of pharmaceutical formulations: flow-injection versus batch-injection analysis. Anal. Methods, 11 (41) 5328-5336.
16 Rodríguez, M.P., Pezza, H.R., and Pezza, L. (2016) Simple and clean determination of tetracyclines by flow injection analysis. Spectrochim. Acta, Part A, 153 386-392.
17 Jin, L., Qiao, J., Chen, J., Xu, N., and Wu, M. (2020) Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta, 208 120404.
18 Kuang, G., Wang, C., Song, L., Zhang, G., Yang, Y., and Fu, Y. (2023) Novel electrochemiluminescence luminophore based on flower-like binuclear coordination polymer for high-sensitivity detection of tetracycline in food products. Food Chem., 403 134376.
19 Wang, T., Mei, Q., Tao, Z., Wu, H., Zhao, M., Wang, S., and Liu, Y. (2020) A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens. Bioelectron., 148 111791.
20 Yao, R., Deng, B., Li, Z., Xie, L., Li, J., Tuo, K., Fan, C., and Pu, S. (2023) A covalent organic framework rich in lanthanide Eu3+ binding sites for sensitive and selective determination of tetracycline. Dyes Pigm., 213 111159.
21 Weng, X., Huang, J., Ye, H., Xu, H., Cai, D., and Wang, D. (2022) A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode. Anal. Methods, 14 (31) 3000-3010.
22 Xu, H., Zhang, D., Weng, X., Wang, D., and Cai, D. (2022) Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline. Microchim. Acta, 189 (5) 201.
23 Aljeboree, A.M., Abbas, A.S., Abdulrazzak, F.H., Abd Alrazzak, N., and Alkaim, A.F. (2021) Role of Selenium dioxide in Spectrophotometric determination of Tetracycline in pure and pharmaceutical formulations. J. Phys.: Conf. Ser., 1999 (1) 012157.
24 J Al-Ashow, R., and S Othman, N. (2012) Spectrophotometric determination of tetracycline by coupling with diazotised 4-aminoantipyrine in presence of cetylpyridinium chloride. Rafidain journal of science, 23 (3) 72-84.
25 Ali, R.J., Hawezy, H.J.S., and Abdullah, M.S. (2018) Spectrophotometric determination of tetracycline hydrochloride through coupling with sulphanilic acid. Diyala Journal of Medicine, 15 (2) 15-22.