How to cite this paper
Hasanzadeh, M & Sabzi, R. (2015). Preparation and characterization of nickel oxide nanoparticles and their application in glucose and methanol sensing.Current Chemistry Letters, 4(2), 45-54.
Refrences
1. Wang, Y.L., Xu, Y.H., Luo, L.Q., Ding, Y.P., Liu, X.J. and Huang, A.Q. (2010) A novel sensitive nonenzymatic glucose sensor based on perovskite LaNi0.5Ti0.5O3-modified carbon paste electrode. Sens. Actuators , B: Chem. 151, 65–70.
2. Reitz, E., Jia, W.Z., Gentile, M., Wang, Y. and Lei, Y. (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20, 2482–2486.
3. Reach, G. and Wilson, G.S. (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal. Chem. 64, 381A-386A.
4. Wilson, R. and Turner, A.P.F. (1992) Glucoseoxidase an ideal enzyme. Biosens. Bioelectron. 7, 165-185.
5. Park, S., Boo, H. and Chung, T.D. (2006) Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta, 556, 46-57.
6. Wrobel, K., Rodr?guez, D.M., Aguilar, F.J.A. and Wrobel, K. (2005) Determination of methanol in o,o-dimethyldithiophosphoric acid (DMDTPA) of technical grade by UV/vis spectrophotometry and by HPLC. Talanta 66, 125-129.
7. Berchmans, S., Gomathi, H. and Prabhakara, Rao, G. (1995) Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. J. Electroanal. Chem. 394, 267–270.
8. You, T., Niwa, O., Chen, Z., Hayashi, K., Tomita, M. and Hirono, S. (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal. Chem. 75, 5191–5196.
9. Ding, Y., Wang, Y., Su, L., Zhang, H. and Lei, Y. (2010) Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918–9926.
10. Chen, J., Zhang, W.D. and Ye, J.S. (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10, 1268–1271.
11. Zang, J., Chang, M.L., Cui, X., Wang, J., Sun, X., Dong, H. and Sun, C.Q. (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014.
12. Li, S.J., Xia, N., Lv, X.L., Zhao, M.M., Yuan, B.Q. and Pang, H. (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methano. Sens. Actuators, B: Chem. 190, 809– 817.
13. Li, L. (2004) Surfactant and nanotechnology. Chemical industry publishing, Beijing, 2004, pp. 83–88.
14. Niu, X., Li, Y., Tang, J., Hu, Y., Zhao, H. and Lan, M. (2014) Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case. Biosens. Bioelectro. 51, 22-28.
15. Shin, H.C. and Liu, M. (2004) Copper foam structures with highly porous nanostructured walls’, Chem. Mater. 16, 5460-5464.
16. Prathap, M.U.A., Kaur, B. and Srivastava, R. (2012) Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. J. Colloid Interface Sci., 381, 143-151.
17. Nie, H., Yao, Z., Zhou, X., Yang, Z. and Huang, S. (2011) Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 30, 28–34.
18. Li, C., Su, Y., Zhang, S., Lv, X., Xia, H. and Wang, Y. (2010) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens. Bioelectron. 26, 903–907.
19. Zhou, X., Nie, H., Yao, Z., Dong, Y., Yang, Z. and Huang, S. (2012) Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators B: Chem. 168, 1–7.
20. Park, S., Chung, T.D. and Kim, H.C. (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049.
21. Ye, J.S., Wen, Y., Zhang, W.D., Gan, L.M., Xu, G.Q. and Sheu, F.S. (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun. 6, 66–70.
22. Liu, Y., Luo, S.L., Wei, W.Z., Liu, X.Y. and Zeng, X.D. (2009) Methanol sensor based on the combined electrocatalytic oxidative effect of chitosan-immobilized nickel(II) and the antibiotic cefixime on the oxidation of methanol in alkaline medium. Microchim. Acta 164, 351-355.
23. Liu, Q.F. and Kirchhoff, J.R. (2007) Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. J. Electroanal. Chem. 601, 125-131.
24. Salimia, A., Noorbakhash, A., Sharifi, E. and Semnani, A. (2008) Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens. Bioelectron. 24, 792–798.
25. Lee, K.K., Loh, P.Y., Sow, C.H. and Chin, W.S. (2012) CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20, 128–132.
26. Yang, J., Yu, J. H., Strickler, J.R., Chang, W. J. and Gunasekaran, S. (2013) Nickel nanoparticle-chitosan-reducedgrapheneoxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron. 47, 530–538.
27. Kim, D.W., Lee, J.S., Lee, G.S., Overzet, L., Kozlov, M., Aliev, A.E., Park, Y.W. and Yang, D.J. (2006) Carbon nanotubes based methanol sensor for fuel cells application. J. Nanosci. Nanotechnol. 6, 3608-3613.
28. Selvaraj, V. and Alagar, M. (2007) Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9, 1145-1153.
2. Reitz, E., Jia, W.Z., Gentile, M., Wang, Y. and Lei, Y. (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20, 2482–2486.
3. Reach, G. and Wilson, G.S. (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal. Chem. 64, 381A-386A.
4. Wilson, R. and Turner, A.P.F. (1992) Glucoseoxidase an ideal enzyme. Biosens. Bioelectron. 7, 165-185.
5. Park, S., Boo, H. and Chung, T.D. (2006) Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta, 556, 46-57.
6. Wrobel, K., Rodr?guez, D.M., Aguilar, F.J.A. and Wrobel, K. (2005) Determination of methanol in o,o-dimethyldithiophosphoric acid (DMDTPA) of technical grade by UV/vis spectrophotometry and by HPLC. Talanta 66, 125-129.
7. Berchmans, S., Gomathi, H. and Prabhakara, Rao, G. (1995) Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. J. Electroanal. Chem. 394, 267–270.
8. You, T., Niwa, O., Chen, Z., Hayashi, K., Tomita, M. and Hirono, S. (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal. Chem. 75, 5191–5196.
9. Ding, Y., Wang, Y., Su, L., Zhang, H. and Lei, Y. (2010) Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918–9926.
10. Chen, J., Zhang, W.D. and Ye, J.S. (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10, 1268–1271.
11. Zang, J., Chang, M.L., Cui, X., Wang, J., Sun, X., Dong, H. and Sun, C.Q. (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008–1014.
12. Li, S.J., Xia, N., Lv, X.L., Zhao, M.M., Yuan, B.Q. and Pang, H. (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methano. Sens. Actuators, B: Chem. 190, 809– 817.
13. Li, L. (2004) Surfactant and nanotechnology. Chemical industry publishing, Beijing, 2004, pp. 83–88.
14. Niu, X., Li, Y., Tang, J., Hu, Y., Zhao, H. and Lan, M. (2014) Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case. Biosens. Bioelectro. 51, 22-28.
15. Shin, H.C. and Liu, M. (2004) Copper foam structures with highly porous nanostructured walls’, Chem. Mater. 16, 5460-5464.
16. Prathap, M.U.A., Kaur, B. and Srivastava, R. (2012) Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. J. Colloid Interface Sci., 381, 143-151.
17. Nie, H., Yao, Z., Zhou, X., Yang, Z. and Huang, S. (2011) Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 30, 28–34.
18. Li, C., Su, Y., Zhang, S., Lv, X., Xia, H. and Wang, Y. (2010) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens. Bioelectron. 26, 903–907.
19. Zhou, X., Nie, H., Yao, Z., Dong, Y., Yang, Z. and Huang, S. (2012) Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators B: Chem. 168, 1–7.
20. Park, S., Chung, T.D. and Kim, H.C. (2003) Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049.
21. Ye, J.S., Wen, Y., Zhang, W.D., Gan, L.M., Xu, G.Q. and Sheu, F.S. (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun. 6, 66–70.
22. Liu, Y., Luo, S.L., Wei, W.Z., Liu, X.Y. and Zeng, X.D. (2009) Methanol sensor based on the combined electrocatalytic oxidative effect of chitosan-immobilized nickel(II) and the antibiotic cefixime on the oxidation of methanol in alkaline medium. Microchim. Acta 164, 351-355.
23. Liu, Q.F. and Kirchhoff, J.R. (2007) Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. J. Electroanal. Chem. 601, 125-131.
24. Salimia, A., Noorbakhash, A., Sharifi, E. and Semnani, A. (2008) Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens. Bioelectron. 24, 792–798.
25. Lee, K.K., Loh, P.Y., Sow, C.H. and Chin, W.S. (2012) CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20, 128–132.
26. Yang, J., Yu, J. H., Strickler, J.R., Chang, W. J. and Gunasekaran, S. (2013) Nickel nanoparticle-chitosan-reducedgrapheneoxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron. 47, 530–538.
27. Kim, D.W., Lee, J.S., Lee, G.S., Overzet, L., Kozlov, M., Aliev, A.E., Park, Y.W. and Yang, D.J. (2006) Carbon nanotubes based methanol sensor for fuel cells application. J. Nanosci. Nanotechnol. 6, 3608-3613.
28. Selvaraj, V. and Alagar, M. (2007) Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9, 1145-1153.