How to cite this paper
Ali, M., Haldera, P., Hossain, M., Biswas, J., Sarker, S., Kamruzzaman, M., Nurujjaman, N., Thamid, T., Ali, M., Chakma, U & Kumer, A. (2023). A study on pseudo-potential effect, electronic structure, aquatic toxicity, and optical properties of perovskites solar cell of Cs2NiCl6, Cs2NiBr6, and Cs2PtBr6: Through DFT methods.Current Chemistry Letters, 12(3), 557-566.
Refrences
1 Xiang W., Tress W., (2019) Review on recent progress of all‐inorganic metal halide perovskites and solar cells. Adv. Mater., 31 (44), 1902851.
2 Chang H. D., Das D., Varde P. V., Pecht M. (2012) Light emitting diodes reliability review. Microelectron. Reliab., 52 (5), 762-782.
3 Zhang S., Yu F., (2011) Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 94 (10), 3153-3170.
4 Samuel I. D. W., Yang Y., Wang Y., Turnbull G. A., (2007) Organic semiconductor lasers. Chem. Rev., 107 (4), 1272-1295.
5 Lin C. H., Liu W. C., (2010) Metal-insulator-semiconductor photodetectors. Sensors., 10 (10), 8797-8826.
6 Gamliel S., Lioz E., (2014) Organo-metal perovskite based solar cells: Sensitized versus planar architecture. RSC Adv., 4 (55), 29012-29021.
7 Djurišić A. B., Liu F.Z., Tam W. H., Wong K. M., Ng A., Surya C., Chen W., He Z. B., (2017) Perovskite solar cells-an overview of critical issues. Prog. Quantum., 53, 1-37.
8 Ding D., Henan L., Jieni L., Zibo L., Lui L., Tian B. B., Su C., Chen F., Shi Y., (2019) Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. J. Mater. Chem., 7 (2), 540-548.
9 Li W. G., Rao S. H., Chen X. B., Wang D. X., Kuang B. D.,(2017) A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem., 5 (36), 19431-19438.
10 Harikesh C. P., Wu B., Ghosh B., Jhon A. B., Lie S., Thirumal K., Wong H. L., Sum C. T., Mhaisalkar S. Mathews N., (2018) Nripan Metal cation transmutation enabled doping and switchable photovoltaic effect in lead free perovskite with extended carrier lifetimes, Adv. Mater., 1802080 (1-8).
11 Armenise V., Silvia C., Francesco F., Andrea L., (2021) Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions. J. Nanomater., 11 (2), 433.
12 Ali H., Khan E., Ilahi I., (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem., 2019.
13 Alengebawy A., Abdelkhalek T. S., Qureshi R. S., Wong Q. M. (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9 (3), 42.
14 Steffan J. J., Brevik E. C., Burgess C. L., Cerdà A., (2018) The effect of soil on human health: An overview. Eur. J. Soil Sci., 69 (1), 159-171.
15 Saber F. A., Sayed M., Tolba S. M., S., El-Deana K. M. A., Hassanien R., Ahmed M. (2021) A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno [2, 3-d] pyrimidine. Synth. Commun., 51 (3), 398-409.
16 Ahmed M., Sayed M., Saber F. A., Hassanien R., El-Deana K. M. A., Tolba S. M. (2022) Synthesis, characterization, and antimicrobial activity of new thienopyrimidine derivatives. Polycyclic Aromatic Compounds, 42 (6), 3079-3088.
17 El-Deana K. M. A., Zaki M. R., Redwan M. S., Saber F. A., (2017) Synthesis, reactions and spectral characterization of novel thienopyrazole derivatives. Eur. Chem. Bull., 6 (12), 550-553.
18 Zaki M. R., El-Deana K. M. A., Radwan M. S., Saber F. A., (2019) Efficient synthesis, reactions and spectral characterization of pyrazolo [4’, 3’: 4, 5] thieno [3, 2-d] pyrimidines and related heterocycles. Heterocycl. Commun., 25 (1), 39-46.
19 Saber F.A., Z., Zaki M. R., El-Deana K. M. A., Radwan M. S., (2020) Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno [2, 3‐c] pyrazole‐5‐carboxamide. J. Heterocycl. Chem., 57 (1), 238-247.
20 Zaki M. R., El-Deana K. M. A., Radwan M. S., Saber F.A., (2018) A convenient synthesis, reactions and biological activity of some new 6h-pyrazolo [4', 3': 4, 5] thieno [3, 2-d][1, 2, 3] triazine compounds as antibacterial, anti-fungal and anti-inflammatory agents. J. Braz. Chem. Soc., 29, 2482-2495.
21 Baranowski M., Dyksik M., Płochocka P., (2022) 2d metal halide perovskites: A new fascinating playground for exciton fine structure investigations. Sci. Rad, 1 (1), 3-25.
22 Klug T. M., Osherov A., Haghighirad A. A., Stranks D. S., Brown R. P., Bai S., Wang W. T. J., Dang X., Bulović V., Snaith J. H., Belcher M. A., (2017) Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy Environ. Sci, 10 (1), 236-246.
23 Wu X. S., Weidong L., Qian Z., Xixia H., Dongsheng Q., Zewei (2018) Synthesis of lead‐free csgei3 perovskite colloidal nanocrystals and electron beam‐induced transformations. Chem. Asian J., 13 (13), 1654-1659.
24 Volonakis G. H., Amir A. M., Rebecca L. S., Weng H. F., Marina R. W., Bernard J., Michael B. H., Laura M. S., Henry J., Feliciano G., (2017) Cs2inagcl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett., 8 (4), 772-778.
25 Gray M. B. M., Eric T W., Patrick M., (2019) Cs 2 agbibr 6− x cl x solid solutions–band gap engineering with halide double perovskites. J. Mater. Chem. C, 7 (31), 9686-9689.
26 Li Q. W., Yonggang P., Weicheng Y., Wenge Z., Bo T., Jiang Q., Zewei X., (2017) High‐pressure band‐gap engineering in lead‐free Cs2AgBiBr6 double perovskite. Angew. Chem. Int. Ed., 56 (50), 15969-15973.
27 Ogunniranye B. I., Oyewande E. O., Atsue T., Usikalu M., (2021) Influence of transition metal doping on the structural and electronic behaviour of quaternary double perovskite, cs2agincl6, using first-principles calculations. IOP Conf. Ser.: Earth Environ. Sci. 655 012046.
28 Razavi K. H., Edalati K., Wu J., Nakashima Y. Arita M., IkomaY., Sadakiyo M., Inagaki Y., Staykov A., Yamauchi M., Horita Z., Fuji M. (2017) High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. J. Mater. Chem., 5 (38), 20298-20303.
29 Bi P. Z., Shaoqing R., Junzhen C., Zhihao Z., Zhong C., Yong W., Jianqiu W., Shijie Z., Tao L., Jiayao F. (2022) A high‐performance nonfused wide‐bandgap acceptor for versatile photovoltaic applications. Adv. Mater., 34 (5), 2108090.
30 Razumovskiy V. I., Lozovoi Y. A., Razumovskii M. I., (2015) First-principles-aided design of a new ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater., 82, 369-377.
31 Li X., Muwei L., Hongbo W., Hongzhi X., Meng R., Hongpan W., Jing L., Jia L., Jiajia C., Wenxing J., (2020) Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter, 2 (3), 554-586.
32 Mccall K. M. (2019), Synthesis, crystal growth, and optoelectronic characterization of inorganic halide perovskites as semiconductors for hard radiation detection. ProQuest no: 13807148, ProQuest Dissertations Publishing, United States.
33 Cai Y. X., Wei D., Hong C., Yan T., Krishnamoorthy W., Lydia H M., Nripan M., Subodh S., Matthew A., Mark G. (2017) Computational study of halide perovskite-derived a2bx6 inorganic compounds: Chemical trends in electronic structure and structural stability. Chem. Mater., 29 (18), 7740-7749.
34 Ray A. D. T., Luca Z., Juliette I., Ivan M., Liberato A., Ahmed L. (2022) Light emission from low‐dimensional pb‐free perovskite‐related metal halide nanocrystals. Adv. Opt. Mater., 2202005.
35 Tang Y. T., Songzhi L., Ming G., Yanmei Z., Yingping L., Yongbing Z., Yixin F.(2021) All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects. Chem comm, 57 (61), 7465-7479.
36 Sohier T., Matteo M., Francesco C. (2016) Two-dimensional fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations. Phys. Rev. B., 94 (8), 085415.
37 Hammer B. H., Lars Bruno N., Jens K. (1999) Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B., 59 (11), 7413.
38 Adamo C., Vincenzo B., (2002) Physically motivated density functionals with improved performances: The modified perdew–burke–ernzerhof model. Chem. Phys., 116 (14), 5933-5940.
39 Khein A. S., David J. U., Cyrus J. (1995) All-electron study of gradient corrections to the local-density functional in metallic systems. Phys. Rev. B., 51 (7), 4105.
40 Tran F., Robert B., Peter S., Karlheinz L., (2007) Performance on molecules, surfaces, and solids of the wu-cohen gga exchange-correlation energy functional. Phys. Rev. B., 75 (11), 115131.
41 Pedroza L. S. D. S., Antonio J., Klaus C., (2009) Gradient-dependent density functionals of the perdew-burke-ernzerhof type for atoms, molecules, and solids. Phys. Rev. B., 79 (20), 201106.
42 Faizan M. B., Murtaza K., Ghulam H., Kulhari X., Neeraj A. A., Murefah M. K., Shah H. (2021) Electronic and optical properties of vacancy ordered double perovskites a2bx6 (a= rb, cs; b= sn, pd, pt; and x= cl, br, i): A first principles study. Sci. Rep., 11 (1), 1-9.
43 Ahmed S. J., Abdul I., Syed Z. M., Hareem A., Simeon A., (2021) The first-principles prediction of two-dimensional indium-arsenide bilayers. Mater. Sci. Semicond. Process, 134, 106041.
44 Wiser N. (1963) Dielectric constant with local field effects included. Phys. Rev. , 129 (1), 62.
45 Chaudhry A. R. H., Bakhtiar U. A., Shaari S., Laref A., (2021) Computational investigation of electronic and optical properties of spinal sulfides sc2xs4 (x= zn, mg and be) for photovoltaic and solar cell applications. Mater. Sci. Semicond. Process, 121, 105435.
46 Kumer A., and Chakma U. (2021) Developing the amazing photocatalyst of znag2gese4, znag2ge0. 93fe0. 07se4 and znag2ge0. 86fe0. 14se4 through the computational explorations by four dft functionals. Heliyon, 7 (7), e07467.
47 Howlader D. H., Sayed M., Chakma U. Kumer A., Mohammad J. I., Tawhidul M. Hossain T., Islam J., (2021) Structural geometry, electronic structure, thermo-electronic and optical properties of gacuo2 and gacu0. 94fe0. 06o2: A first principle approach of three dft functionals. Mol Simul, 47 (17), 1411-1422.
48 Chakma U., Kumer A., Al M., Hossain M., Alam M., Islam M., Shaikh R. M., Jony I. J., Islam J., (2022) Investigation of electronic structure, optical properties, map of electrostatic potential, and toxicity of Hfo2, Hf0. 88si0.12o2, Hf0. 88Ge0.12o2 and Hf0.88Sn0.12O2 by computational and virtual screening. J. Comput. Electron., 1-16.
49 Rahman M. A. Chakma U., Kumer A. Rahman, M. R., Mahbubul M. M., (2023) Uridine-derived 4-aminophenyl 1-thioglucosides: Dft optimized fmo, adme, and antiviral activities study, Biointerface Res. Appl. Chem., 13 (1), 1-15.
50 Kobir M. E., Asif A., Roni M. A. H. Chakma U., Amin M. R., Chandro A., Kumer A., (2022) Anti-lung cancer drug discovery approaches by polysaccharides: An in silico study, quantum calculation and molecular dynamics study. J. Biomol. Struct. Dyn., 1-17.
51 Chakma U. K., Ajoy Hossain, Tomal Hossain, Md Sayed Alam, Md Monsur Islam, Md Shariful Shaikh, Rubel Islam, Jahedul (2022) Investigation of electronic structure, optical properties, molecular electrostatic potential maps (epm) and aquatic toxicity of hfo2, hf0. 88si0. 12o2, hf0. 88ge0. 12o2 and hf0. 88sn0.12o2 by computational methods, researchsquare, 1-18.
52 Kumer A. Chakma U. Alam M. M., Chakma P., Islam M. S., Khandaker N. Z., Hossain T. Chowdury A. N. (2022) Structural, electronic, and opto-electronic properties for bivs4 photocatalyst effort on wastewater treatment with comparison a standard photocatalyst bivo4 through the first principles. ECS Transactions, 107 (1), 12109.
53 Mahmud M. A., Kumer A. Chakma U., Howlader D. Hoque K. A. Chowdury A. N. (2022) Fabrication of computationally designed cathode material for a high-performance na-ion battery. ECS Transactions, 107 (1), 15681.
54 Hoque K. A., Kumer A., Chakma U. Chowdury A. N. (2022) Facile synthesis of computationally designed mgal2o4/ceo2/cu2o and mgal2o4/ceo2/ag2o smart heterojunction photocatalysts for aqueous organic pollutants degradation. ECS Transactions, 107 (1), 13785.
55 Ali M. I., Mohammad J., Kumer A., Hossain M., Chakma U. Howlader D., Islam M., Hossain, T. (2021) Investigation of structural, electronic and optical properties of na 2 inagcl 6, k 2 inagcl 6, and rb 2 inagcl 6 lead-free halide double perovskites regarding with cs 2 inagcl 6 perovskites cell and a comparative study by dft functionals. Mater. Res., 24.
56 Al M. A., Habib A. M., Chakma U., Sikder M., Kumer A., (2021) Structural, electronic, optical properties and molecular dynamics study of wo3 w0. 97ag0. 03o3 and w0. 94ag0. 06o3 photocatalyst by the first principle of dft study. Egypt. J. Chem., 64 (9), 5117-5126.
57 Hasan M. M., Kumer A., Chakma U., Tawhidul I. M. (2021) Structural, optical and electronic properties of znag 2 gete 4 and znag 2 ge 0.93 fe 0.07 te 4 photocatalyst: A first principle approach. Mol. Simulat, 47, 1-13.
58 Ali M. I., Rafid M., Jeetu M., Roy R. R, Chakma U, (2021) The computational screening of structural, electronic, and optical properties for sic, si0. 94sn0. 06c, and si0. 88sn0. 12c lead-free photovoltaic inverters using dft functional of first principle approach. Eurasian Chem. Commun. , 3 (5), 327-338.
59 Sikder M. M. Chakma U., Kumer A. Islam M. J., Habib A. Alam M. M. (2021) The exploration of structural, electronic and optical properties for mos2 and mo0. 95w0. 05s2 photocatalyst effort on wastewater treatment using dft functional of first principle approach. Appl. J. Environ. Eng, 7 (1), 7-1 (2021) 2103-2113.
60 Hossain T. H., Ali M. H., Chakma U. Kumer A. Islam M. J. (2021) Investigation of optoelectronics, thermoelectric, structural and photovoltaic properties of ch3nh3snbr3 lead-free organic perovskites. Chem. Methodol., 5 (3), 259-270.
61 Islam M. T., Kumer A., Chakma U. Howlader D. (2021) A computational investigation of electronic structure and optical properties of alcuo2 and alcu0. 96fe0. 04o2: A first principle approach. Orbital: J. Chem., 58-64.
62 Chakma K. B. Kumer A. Chakma U. Howlader D. Islam M. T., (2020) A theoretical investigation for electronics structure of mg (bio2) 2 semiconductor using first principle approach. Int J New Chem, 7 (3), 247-255.
63 Chakma U. Kumer A., Chakma K. B., Islam M. T. Howlader D. Mohamed R. M.,(2020) Electronics structure and optical properties of srpbo3 and srpb0. 94fe0. 06o3: A first principle approach. Eurasian Chem Commun, 2 (5), 573-580.
64 Islam M. T., Kumer A., Howlader D, Chakma K. B. Chakma U. (2020) Electronics structure and optical properties of mg (bio2) 4 and mg (bi0. 91ge0. 083o2) 4: A first principle approach. Comput. Theor. Chem., 4 (1), 24-31.
65 Hasan M. M. Kumer A., Chakma U., (2020) Theoretical investigation of doping effect of fe for snwo4 in electronic structure and optical properties: Dft based first principle study. Adv. J. Chem. A , 3 (5), 639-644.
66 Chakma U. Kumer A. Chakma K. B., Islam M. T. Howlader D., (2020) Electronics structure and optical properties of ag2bio3,(ag2) 0.88 fe0. 12bio3: A first principle approach. Adv. J. Chem. A , 3 (4), 542-550.
67 Islam J. Kumer A. Chakma U. Alam M., Biswas S., Ahmad Z., Islam M., Jony M. I. J., Ahmed M. B. Investigation of structural, electronic, and optical properties of srtio3 and srti0. 94ag0. 06o3 quantum dots based semiconductor using first principle approach. Adv. J. Chem. A, 5 (2), 164-174.
2 Chang H. D., Das D., Varde P. V., Pecht M. (2012) Light emitting diodes reliability review. Microelectron. Reliab., 52 (5), 762-782.
3 Zhang S., Yu F., (2011) Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 94 (10), 3153-3170.
4 Samuel I. D. W., Yang Y., Wang Y., Turnbull G. A., (2007) Organic semiconductor lasers. Chem. Rev., 107 (4), 1272-1295.
5 Lin C. H., Liu W. C., (2010) Metal-insulator-semiconductor photodetectors. Sensors., 10 (10), 8797-8826.
6 Gamliel S., Lioz E., (2014) Organo-metal perovskite based solar cells: Sensitized versus planar architecture. RSC Adv., 4 (55), 29012-29021.
7 Djurišić A. B., Liu F.Z., Tam W. H., Wong K. M., Ng A., Surya C., Chen W., He Z. B., (2017) Perovskite solar cells-an overview of critical issues. Prog. Quantum., 53, 1-37.
8 Ding D., Henan L., Jieni L., Zibo L., Lui L., Tian B. B., Su C., Chen F., Shi Y., (2019) Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. J. Mater. Chem., 7 (2), 540-548.
9 Li W. G., Rao S. H., Chen X. B., Wang D. X., Kuang B. D.,(2017) A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem., 5 (36), 19431-19438.
10 Harikesh C. P., Wu B., Ghosh B., Jhon A. B., Lie S., Thirumal K., Wong H. L., Sum C. T., Mhaisalkar S. Mathews N., (2018) Nripan Metal cation transmutation enabled doping and switchable photovoltaic effect in lead free perovskite with extended carrier lifetimes, Adv. Mater., 1802080 (1-8).
11 Armenise V., Silvia C., Francesco F., Andrea L., (2021) Lead-free metal halide perovskites for hydrogen evolution from aqueous solutions. J. Nanomater., 11 (2), 433.
12 Ali H., Khan E., Ilahi I., (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem., 2019.
13 Alengebawy A., Abdelkhalek T. S., Qureshi R. S., Wong Q. M. (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9 (3), 42.
14 Steffan J. J., Brevik E. C., Burgess C. L., Cerdà A., (2018) The effect of soil on human health: An overview. Eur. J. Soil Sci., 69 (1), 159-171.
15 Saber F. A., Sayed M., Tolba S. M., S., El-Deana K. M. A., Hassanien R., Ahmed M. (2021) A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno [2, 3-d] pyrimidine. Synth. Commun., 51 (3), 398-409.
16 Ahmed M., Sayed M., Saber F. A., Hassanien R., El-Deana K. M. A., Tolba S. M. (2022) Synthesis, characterization, and antimicrobial activity of new thienopyrimidine derivatives. Polycyclic Aromatic Compounds, 42 (6), 3079-3088.
17 El-Deana K. M. A., Zaki M. R., Redwan M. S., Saber F. A., (2017) Synthesis, reactions and spectral characterization of novel thienopyrazole derivatives. Eur. Chem. Bull., 6 (12), 550-553.
18 Zaki M. R., El-Deana K. M. A., Radwan M. S., Saber F. A., (2019) Efficient synthesis, reactions and spectral characterization of pyrazolo [4’, 3’: 4, 5] thieno [3, 2-d] pyrimidines and related heterocycles. Heterocycl. Commun., 25 (1), 39-46.
19 Saber F.A., Z., Zaki M. R., El-Deana K. M. A., Radwan M. S., (2020) Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno [2, 3‐c] pyrazole‐5‐carboxamide. J. Heterocycl. Chem., 57 (1), 238-247.
20 Zaki M. R., El-Deana K. M. A., Radwan M. S., Saber F.A., (2018) A convenient synthesis, reactions and biological activity of some new 6h-pyrazolo [4', 3': 4, 5] thieno [3, 2-d][1, 2, 3] triazine compounds as antibacterial, anti-fungal and anti-inflammatory agents. J. Braz. Chem. Soc., 29, 2482-2495.
21 Baranowski M., Dyksik M., Płochocka P., (2022) 2d metal halide perovskites: A new fascinating playground for exciton fine structure investigations. Sci. Rad, 1 (1), 3-25.
22 Klug T. M., Osherov A., Haghighirad A. A., Stranks D. S., Brown R. P., Bai S., Wang W. T. J., Dang X., Bulović V., Snaith J. H., Belcher M. A., (2017) Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy Environ. Sci, 10 (1), 236-246.
23 Wu X. S., Weidong L., Qian Z., Xixia H., Dongsheng Q., Zewei (2018) Synthesis of lead‐free csgei3 perovskite colloidal nanocrystals and electron beam‐induced transformations. Chem. Asian J., 13 (13), 1654-1659.
24 Volonakis G. H., Amir A. M., Rebecca L. S., Weng H. F., Marina R. W., Bernard J., Michael B. H., Laura M. S., Henry J., Feliciano G., (2017) Cs2inagcl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett., 8 (4), 772-778.
25 Gray M. B. M., Eric T W., Patrick M., (2019) Cs 2 agbibr 6− x cl x solid solutions–band gap engineering with halide double perovskites. J. Mater. Chem. C, 7 (31), 9686-9689.
26 Li Q. W., Yonggang P., Weicheng Y., Wenge Z., Bo T., Jiang Q., Zewei X., (2017) High‐pressure band‐gap engineering in lead‐free Cs2AgBiBr6 double perovskite. Angew. Chem. Int. Ed., 56 (50), 15969-15973.
27 Ogunniranye B. I., Oyewande E. O., Atsue T., Usikalu M., (2021) Influence of transition metal doping on the structural and electronic behaviour of quaternary double perovskite, cs2agincl6, using first-principles calculations. IOP Conf. Ser.: Earth Environ. Sci. 655 012046.
28 Razavi K. H., Edalati K., Wu J., Nakashima Y. Arita M., IkomaY., Sadakiyo M., Inagaki Y., Staykov A., Yamauchi M., Horita Z., Fuji M. (2017) High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap. J. Mater. Chem., 5 (38), 20298-20303.
29 Bi P. Z., Shaoqing R., Junzhen C., Zhihao Z., Zhong C., Yong W., Jianqiu W., Shijie Z., Tao L., Jiayao F. (2022) A high‐performance nonfused wide‐bandgap acceptor for versatile photovoltaic applications. Adv. Mater., 34 (5), 2108090.
30 Razumovskiy V. I., Lozovoi Y. A., Razumovskii M. I., (2015) First-principles-aided design of a new ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater., 82, 369-377.
31 Li X., Muwei L., Hongbo W., Hongzhi X., Meng R., Hongpan W., Jing L., Jia L., Jiajia C., Wenxing J., (2020) Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter, 2 (3), 554-586.
32 Mccall K. M. (2019), Synthesis, crystal growth, and optoelectronic characterization of inorganic halide perovskites as semiconductors for hard radiation detection. ProQuest no: 13807148, ProQuest Dissertations Publishing, United States.
33 Cai Y. X., Wei D., Hong C., Yan T., Krishnamoorthy W., Lydia H M., Nripan M., Subodh S., Matthew A., Mark G. (2017) Computational study of halide perovskite-derived a2bx6 inorganic compounds: Chemical trends in electronic structure and structural stability. Chem. Mater., 29 (18), 7740-7749.
34 Ray A. D. T., Luca Z., Juliette I., Ivan M., Liberato A., Ahmed L. (2022) Light emission from low‐dimensional pb‐free perovskite‐related metal halide nanocrystals. Adv. Opt. Mater., 2202005.
35 Tang Y. T., Songzhi L., Ming G., Yanmei Z., Yingping L., Yongbing Z., Yixin F.(2021) All-inorganic lead-free metal halide perovskite quantum dots: Progress and prospects. Chem comm, 57 (61), 7465-7479.
36 Sohier T., Matteo M., Francesco C. (2016) Two-dimensional fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations. Phys. Rev. B., 94 (8), 085415.
37 Hammer B. H., Lars Bruno N., Jens K. (1999) Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B., 59 (11), 7413.
38 Adamo C., Vincenzo B., (2002) Physically motivated density functionals with improved performances: The modified perdew–burke–ernzerhof model. Chem. Phys., 116 (14), 5933-5940.
39 Khein A. S., David J. U., Cyrus J. (1995) All-electron study of gradient corrections to the local-density functional in metallic systems. Phys. Rev. B., 51 (7), 4105.
40 Tran F., Robert B., Peter S., Karlheinz L., (2007) Performance on molecules, surfaces, and solids of the wu-cohen gga exchange-correlation energy functional. Phys. Rev. B., 75 (11), 115131.
41 Pedroza L. S. D. S., Antonio J., Klaus C., (2009) Gradient-dependent density functionals of the perdew-burke-ernzerhof type for atoms, molecules, and solids. Phys. Rev. B., 79 (20), 201106.
42 Faizan M. B., Murtaza K., Ghulam H., Kulhari X., Neeraj A. A., Murefah M. K., Shah H. (2021) Electronic and optical properties of vacancy ordered double perovskites a2bx6 (a= rb, cs; b= sn, pd, pt; and x= cl, br, i): A first principles study. Sci. Rep., 11 (1), 1-9.
43 Ahmed S. J., Abdul I., Syed Z. M., Hareem A., Simeon A., (2021) The first-principles prediction of two-dimensional indium-arsenide bilayers. Mater. Sci. Semicond. Process, 134, 106041.
44 Wiser N. (1963) Dielectric constant with local field effects included. Phys. Rev. , 129 (1), 62.
45 Chaudhry A. R. H., Bakhtiar U. A., Shaari S., Laref A., (2021) Computational investigation of electronic and optical properties of spinal sulfides sc2xs4 (x= zn, mg and be) for photovoltaic and solar cell applications. Mater. Sci. Semicond. Process, 121, 105435.
46 Kumer A., and Chakma U. (2021) Developing the amazing photocatalyst of znag2gese4, znag2ge0. 93fe0. 07se4 and znag2ge0. 86fe0. 14se4 through the computational explorations by four dft functionals. Heliyon, 7 (7), e07467.
47 Howlader D. H., Sayed M., Chakma U. Kumer A., Mohammad J. I., Tawhidul M. Hossain T., Islam J., (2021) Structural geometry, electronic structure, thermo-electronic and optical properties of gacuo2 and gacu0. 94fe0. 06o2: A first principle approach of three dft functionals. Mol Simul, 47 (17), 1411-1422.
48 Chakma U., Kumer A., Al M., Hossain M., Alam M., Islam M., Shaikh R. M., Jony I. J., Islam J., (2022) Investigation of electronic structure, optical properties, map of electrostatic potential, and toxicity of Hfo2, Hf0. 88si0.12o2, Hf0. 88Ge0.12o2 and Hf0.88Sn0.12O2 by computational and virtual screening. J. Comput. Electron., 1-16.
49 Rahman M. A. Chakma U., Kumer A. Rahman, M. R., Mahbubul M. M., (2023) Uridine-derived 4-aminophenyl 1-thioglucosides: Dft optimized fmo, adme, and antiviral activities study, Biointerface Res. Appl. Chem., 13 (1), 1-15.
50 Kobir M. E., Asif A., Roni M. A. H. Chakma U., Amin M. R., Chandro A., Kumer A., (2022) Anti-lung cancer drug discovery approaches by polysaccharides: An in silico study, quantum calculation and molecular dynamics study. J. Biomol. Struct. Dyn., 1-17.
51 Chakma U. K., Ajoy Hossain, Tomal Hossain, Md Sayed Alam, Md Monsur Islam, Md Shariful Shaikh, Rubel Islam, Jahedul (2022) Investigation of electronic structure, optical properties, molecular electrostatic potential maps (epm) and aquatic toxicity of hfo2, hf0. 88si0. 12o2, hf0. 88ge0. 12o2 and hf0. 88sn0.12o2 by computational methods, researchsquare, 1-18.
52 Kumer A. Chakma U. Alam M. M., Chakma P., Islam M. S., Khandaker N. Z., Hossain T. Chowdury A. N. (2022) Structural, electronic, and opto-electronic properties for bivs4 photocatalyst effort on wastewater treatment with comparison a standard photocatalyst bivo4 through the first principles. ECS Transactions, 107 (1), 12109.
53 Mahmud M. A., Kumer A. Chakma U., Howlader D. Hoque K. A. Chowdury A. N. (2022) Fabrication of computationally designed cathode material for a high-performance na-ion battery. ECS Transactions, 107 (1), 15681.
54 Hoque K. A., Kumer A., Chakma U. Chowdury A. N. (2022) Facile synthesis of computationally designed mgal2o4/ceo2/cu2o and mgal2o4/ceo2/ag2o smart heterojunction photocatalysts for aqueous organic pollutants degradation. ECS Transactions, 107 (1), 13785.
55 Ali M. I., Mohammad J., Kumer A., Hossain M., Chakma U. Howlader D., Islam M., Hossain, T. (2021) Investigation of structural, electronic and optical properties of na 2 inagcl 6, k 2 inagcl 6, and rb 2 inagcl 6 lead-free halide double perovskites regarding with cs 2 inagcl 6 perovskites cell and a comparative study by dft functionals. Mater. Res., 24.
56 Al M. A., Habib A. M., Chakma U., Sikder M., Kumer A., (2021) Structural, electronic, optical properties and molecular dynamics study of wo3 w0. 97ag0. 03o3 and w0. 94ag0. 06o3 photocatalyst by the first principle of dft study. Egypt. J. Chem., 64 (9), 5117-5126.
57 Hasan M. M., Kumer A., Chakma U., Tawhidul I. M. (2021) Structural, optical and electronic properties of znag 2 gete 4 and znag 2 ge 0.93 fe 0.07 te 4 photocatalyst: A first principle approach. Mol. Simulat, 47, 1-13.
58 Ali M. I., Rafid M., Jeetu M., Roy R. R, Chakma U, (2021) The computational screening of structural, electronic, and optical properties for sic, si0. 94sn0. 06c, and si0. 88sn0. 12c lead-free photovoltaic inverters using dft functional of first principle approach. Eurasian Chem. Commun. , 3 (5), 327-338.
59 Sikder M. M. Chakma U., Kumer A. Islam M. J., Habib A. Alam M. M. (2021) The exploration of structural, electronic and optical properties for mos2 and mo0. 95w0. 05s2 photocatalyst effort on wastewater treatment using dft functional of first principle approach. Appl. J. Environ. Eng, 7 (1), 7-1 (2021) 2103-2113.
60 Hossain T. H., Ali M. H., Chakma U. Kumer A. Islam M. J. (2021) Investigation of optoelectronics, thermoelectric, structural and photovoltaic properties of ch3nh3snbr3 lead-free organic perovskites. Chem. Methodol., 5 (3), 259-270.
61 Islam M. T., Kumer A., Chakma U. Howlader D. (2021) A computational investigation of electronic structure and optical properties of alcuo2 and alcu0. 96fe0. 04o2: A first principle approach. Orbital: J. Chem., 58-64.
62 Chakma K. B. Kumer A. Chakma U. Howlader D. Islam M. T., (2020) A theoretical investigation for electronics structure of mg (bio2) 2 semiconductor using first principle approach. Int J New Chem, 7 (3), 247-255.
63 Chakma U. Kumer A., Chakma K. B., Islam M. T. Howlader D. Mohamed R. M.,(2020) Electronics structure and optical properties of srpbo3 and srpb0. 94fe0. 06o3: A first principle approach. Eurasian Chem Commun, 2 (5), 573-580.
64 Islam M. T., Kumer A., Howlader D, Chakma K. B. Chakma U. (2020) Electronics structure and optical properties of mg (bio2) 4 and mg (bi0. 91ge0. 083o2) 4: A first principle approach. Comput. Theor. Chem., 4 (1), 24-31.
65 Hasan M. M. Kumer A., Chakma U., (2020) Theoretical investigation of doping effect of fe for snwo4 in electronic structure and optical properties: Dft based first principle study. Adv. J. Chem. A , 3 (5), 639-644.
66 Chakma U. Kumer A. Chakma K. B., Islam M. T. Howlader D., (2020) Electronics structure and optical properties of ag2bio3,(ag2) 0.88 fe0. 12bio3: A first principle approach. Adv. J. Chem. A , 3 (4), 542-550.
67 Islam J. Kumer A. Chakma U. Alam M., Biswas S., Ahmad Z., Islam M., Jony M. I. J., Ahmed M. B. Investigation of structural, electronic, and optical properties of srtio3 and srti0. 94ag0. 06o3 quantum dots based semiconductor using first principle approach. Adv. J. Chem. A, 5 (2), 164-174.