How to cite this paper
Azaid, A., Abram, T., Kacimi, R., Raftani, M., Khaddam, Y., Nebbach, D., Sbai, A., Lakhlifi, T & Bouachrine, M. (2022). Nonlinear optical response of D-π-A chromophores based on benzoxazin: quantum modification of π‑spacer.Current Chemistry Letters, 11(3), 331-340.
Refrences
1 Costes J. P., Lamère J. F., Lepetit C., Lacroix P. G., Dahan F., & Nakatani K. (2005) Synthesis, Crystal Structures, and Nonlinear Optical (NLO) Properties of New Schiff-Base Nickel(II) Complexes. Toward a New Type of Molecular Switch. Inorg Chem., 44 (6) 1973-1982.
2 Santo D. B., & Fragalà I. (2000) Synthesis and second-order nonlinear optical properties of bis (salicylaldiminato) M (II) metalloorganic materials. Synthetic Metals., 115 (1-3) 191-196.
3 Lacroix P. G. (2001) second-Order Optical Nonlinearities in Coordination Chemistry: The Case of Bis (salicylaldiminato) metal Schiff Base Complexes. Eur J Inorg Chem., 2001 (2) 339-348.
4 Williams D. J. (1984) Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities. Angew Chem Int Ed Engl., 23 (9) 690 -703.
5 Janjua M. R. S. A. (2017) Nonlinear optical response of a series of small molecules: quantum modification of π-spacer and acceptor. J Iran Cheme SOC., 14 (9) 2041-2054.
6 Zhong R. L., Xu H. L., Li Z. R., & Su ZM. (2015) Role of Excess Electrons in Nonlinear Optical Response. J Phys Chem Lett., 6 (4) 612-619.
7 Muhammad S., Xu H. L., Zhong R. L., Su Z. M., Al-Sehemi A. G., & Irfan A. (2013) Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities. J Mater Chem C., 1 (35) 5439.
8 Garza A. J., Osman O. I., Wazzan N. A., Khan S. B., Asiri A. M., and Scuseria G. E. (2014) A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment. Theor Chem Acc., 133 (4) 1458.
9 Janjua M. R. S. A., Amin M., Ali M., Bashir B., Khan M. U., Iqbal M. A., Guan W., Yan L., and Su Z. M (2012) A DFT Study on The Two-Dimensional Second-Order Nonlinear Optical (NLO) Response of Terpyridine-Substituted Hexamolybdates: Physical Insight on 2D Inorganic-Organic Hybrid Functional Materials. Eur J Inorg Chem., 2012 (4) 705-711.
10 Dalton L. (2002) Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications. Advances in Polymer Science., 158 1-86.
11 Dulcic A., Flytzanis C., Tang C. L., Pépin D., Fétizon M., & Hoppilliard Y. (1981) Length dependence of the second‐order optical nonlinearity in conjugated hydrocarbons. The Journal of Chemical Physics., 74 (3) 1559 -1563.
12 Zyss J., & Ledoux I. (1994) Nonlinear optics in multipolar media: theory and experiments. Chem Rev., 94 (1) 77-105.
13 Entwistle C. D., Collings J. C., Steffen A., Palsson L. O., Beeby A., Jove D. A., Burke J. M., Batsanov A S., Howard J. A. K., Mosely J. A., Poon S. Y., Wo W. Y., Ibersiene F., Fathallah S., Boucekkine A., Halet J. F. O., & Marder T. B. (2009) Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A–π–A systems containing E-dimesitylborylethenyl acceptors. J Mater Chem., 19 (40) 7532-7544.
14 Wang H., Zhang M., Yang Y., Liu F., Hu C., Xiao H., Qiu L., Liu X., Liu J., & Zhen Z. (2016) Synthesis and characterization of one novel second-order nonlinear optical chromophore based on new benzoxazin donor. Materials Letters., 164 644 - 646.
15 Becke A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A., 38 (6) 3098-3100.
16 Lee C., Yang W., & Parr R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B., 37 (2) 785-789.
17 Perdew J. P., Burke K., & Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett., 77 (18) 3865-3868.
18 Govindarajan M., Ganesan K., Periandy S., and Mohan S. (2010) DFT (LSDA, B3LYP and B3PW91) comparative vibrational spectroscopic analysis of -acetonaphthone. Inorganica Chimica Acta., 486 162–171.
19 Adamo C., & Barone V. (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. The Journal of Chemical Physics., 108 (2) 664-675.
20 Stratmann R. E., Scuseria G. E., & Frisch M J. (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics., 109 (19) 8218-8224.
21 Casida M. E., Jamorski C., Casida K. C., & Salahub D. R. (1998) Molecular excitation energies to high-lying bound states from time-dependent local density approximation ionization threshold. The Journal of Chemical Physics., 108 (11) 4439-44
22 Frisch C. J., Trucks G. W., Schlegel H. B., Scuseria G. E , Robb M. A., et al, (2009) Gaussian 09, Revision A.02.
23 Kumer A., Chakma, U., Matin M. M., Akash S., Chando A., & Howlader D. (2021) The computational screening of inhibitor for black fungus and white fungus by D-glucofuranose derivatives using in silico and SAR study. Org. Commun., 14 (4) 305-322.
24 Islam N., Islam M. D., Rahman M. R., & Matin M. M. (2021) Octyl 6-O-hexanoyl-β-D-glucopyranosides: Synthesis, PASS, antibacterial, in silico ADMET, and DFT studies. Curr. Chem. Lett., 10 (4) 413-426.
25 Hanee U., Rahman M. R., & Matin M. M. (2021) Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside esters. Phys. Chem. Res., 9 (4) 591-603.
26 Foster J. P., and Weinhold F. (1980) Natural hybrid orbitals. J Am Chem Soc., 102 (24) 7211-7218.
27 Guillaumont D., & Nakamura S. (2000) Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dyes and Pigments., 46( 2) 85-92.
28 Yanai T., Tew D. P., & Handy N. C. (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters., 393(1-3) 51-57.
29 Lin C., & Wu K. (2000) Theoretical studies on the nonlinear optical susceptibilities of 3-methoxy-4-hydroxy-benzaldehyde crystal. Chemical Physics Letters., 321 (1-2) 83-88.
30 Karamanis P., Pouchan C., & Maroulis G. (2008) Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Phys Rev A., 77 (1) 013201.
31 Ghanavatkar C. W., Mishra V. R., & Sekar N. (2021) Review of NLO phoric azo dyes – Developments in hyperpolarizabilities in last two decades. Dyes and Pigments., 191 109367.
32 Kacimi R., Bourass M., Toupance T., Wazzan N., Chemek M., El Alamy A,. Bejjit L., Alimi K., & Bouachrine M. (2020) Computational design of new organic (D–π–A) dyes based on benzothiadiazole for photovoltaic applications, especially dye-sensitized solar cells. Res Chem Intermed., 46 (6) 3247-3262.
33 Etabti H., Fitri A., Benjelloun A. T., Hachi M., Benzakour M., & Mcharfi M. (2021) Benzocarbazole-based D–Di–π–A dyes for DSSCs: DFT/TD-DFT study of influence of auxiliary donors on the performance of free dye and dye–TiO2 interface. Res Chem Intermed., 47 (10) 4257-4280.
34 Rajan V. K., & Muraleedharan K. (2017) A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chemistry., 220 93-99.
35 Daolio A., Pizzi A., Calabrese M., Terraneo G., Bordignon S., Frontera A., & Resnati, V. (2021) Molecular Electrostatic Potential and Noncovalent Interactions in Derivatives of Group 8 Elements. Zitierweise: Angew. Chem. Int. Ed., 60 (133) 20723 – 20727.
36 Wang H, Wang X, Wang H, Wang L, & Liu A. (2007) DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitor. J Mol Model., 13 147–153.
37 Raftani M., Abram T., Loued W., Kacimi R., Azaid A., Alimi K., Bennani M. N., & Bouachrinea M. (2021) The optoelectronic properties of π-conjugated organic molecules based on terphenyl and pyrrole for BHJ solar cells: DFT / TD-DFT theoretical study. Current Chemistry Letters., 10 (4) 489-502.
38 Islam N., & Ghosh D. C. (2012) On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. International Journal of Molecular Sciences., 13 2160-2175.
39 Parr R. G., & Pearson R. G. (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc., 105 (26) 7512-7516.
40 Parr R. G., Donnelly R. A., Levy M., & Palke W. E. (1978) Electronegativity: The density functional view point. The Journal of Chemical Physics., 68 (8) 3801-3807.
41 Aziz S. G., Elroby S. A. K., Hilal R. H., & Osman O. I. (2014) Theoretical and computational studies of conformation, natural bond orbital and nonlinear optical properties of cis-N-phenylbenzohydroxamic acid. Computational and Theoretical Chemistry., 1028 65-71.
42 Peng Z., & Yu L. (1994) Second-Order Nonlinear Optical Polyimide with High-Temperature Stability. Macromolecules., 27 (9) 2638-2640.
43 Tsutsumi N., Morishima M., & Sakai W. (1998) Nonlinear Optical (NLO) Polymers. 3. NLO Polyimide with Dipole Moments Aligned Transverse to the Imide Linkage. Macromolecules., 31 (22) 7764-7769.
44 Hussain A., Khan M. U., Ibrahim M., Khalid M., Ali A., Hussain S., Saleem M., Ahmad N., Muhammad S., Al-Sehemi A G., & Sultan A. (2020) Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: A comparison between DFT/TDDFT and experimental study. Journal of Molecular Structure., 1201 127-183.
45 Jawaria R., Hussain M., Khalid M., Khan U. M., Tahir N. M., Naseer M. M., Braga C. A. A., & Shafiq Z. (2019) Synthesis, crystal structure analysis, spectral characterization and nonlinear optical exploration of potent thiosemicarbazones based compounds: A DFT refine experimental study. Inorganica Chimica Acta., 486 162-171.
46 Zaitri L. K., & Mekelleche S. M. (2021) DFT and TD-DFT Study on Quadratic NLO Response and Optoelectronic Activity in Novel Y-Shaped Imidazole-Based Push-Pull Chromophores. In Review., 136 (27) 1-14.
47 Khalid M., Khan M. U., Shafiq I., Hussain R., Mahmood K., Hussain A., Jawaria R., Hussain A,. Imran M., Assiri M. A., Ali A., Rehman M. F. U., Sun K., & Li Y. (2021) NLO potential exploration for D–π–A heterocyclic organic compounds by incorporation of various π-linkers and acceptor units. Arabian Journal of Chemistry., 14 (8) 1878-5352.