How to cite this paper
Pangal, A., Tambe, P & Ahmed, K. (2023). Screening of 3-acetylcoumarin derivatives as multifunctional biological agents.Current Chemistry Letters, 12(2), 343-352.
Refrences
1. Andricopulo A. D., Salum L. B., and Abraham D. J. (2009) Structure-based drug design strategies in medicina chemistry. Curr. Top Med Chem, 9(9), 771-790. https://doi.org/10.2174/156802609789207127
2. Bansal Y., and Silakari O. (2014) Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 76, 31-42. https://doi.org/10.1016/j.ejmech.2014.01.060
3. Geldenhuys W. J., Youdim M. B.H., Carroll R. T., and Van der Schyf C. J., (2011) The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol., 94(4), 347-359. https://doi.org/10.1016/j.pneurobio.2011.04.010
4. Szymańska U. A., Kurzyna M., Segiet-Święcicka A., Kułak P., and Kosior D. A. (2022) Real-life trends of anticoagulant prescribing practices for pulmonary embolism – results of a single-center study based on the experience of a multi-profile clinical hospital. Scientiae Radices, 1(1), 36-45. http://doi.org/10.58332/v22i1a03
5. Melagraki G., Afantitis A., Igglessi-Markopoulou O., Detsi A, Koufaki M., Kontogiorgis C., and Hadjipavlou-Litina D. J. (2009) Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 44, 3020-3026. https://doi.org/10.1016/j.ejmech.2008.12.027
6. Sahoo C. R., Sahoo J., Mahapatra M., Lenka D., Sahu P. K., Dehury B., Padhy R. N., and Paidesetty S. K. (2021) Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem., 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
7. Ventola C. L. (2015) The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, 40(4), 277–283. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4378521/
8. Laxminarayan R., Mills A. J., Breman J. G., Measham A. R., Alleyne G., Claeson M., Jha P., Musgrove P., Chow J., Shahid-Salles S., and Jamison D. T. (2006) Advancement of global health: key messages from the Disease Control Priorities Project. Lancet, 367, 1193–1208. https://doi.org/10.1016/s0140-6736(06)68440-7
9. Ferreira L. G., Dos Santos R. N., Oliva G., and Andricopulo A. D. (2015) Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
10. Bhagat K., Bhagat J., Gupta M. K., Singh J. V., Gulati H. K., and Singh A. et. al. (2019) Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione–coumarin molecular hybrids. ACS Omega, 4(5), 8720-8730. https://doi.org/10.1021/acsomega.8b02481
11. Patel R. M., and Patel N. J. (2011) In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education and Research, 1, 52-68. https://japer.in/issue/volume-1-issue-1-2011
12. Abdalla A. E., and Roozen J. P. (1999) Effect of plant extracts on the oxidative stability of sunflower oil and emulsion. Food Chem., 64, 323–329. https://doi.org/10.1016/S0308-8146(98)00112-5
13. Pangal A., Shaikh J. A., and Khan E. M. (2017) Current developments of C3-substituted coumarin hybrids as anti-cancer agents. Int. J. Pharm. Sci. Rev. Res., 42(1), 161-168. https://www.globalresearchonline.net/pharmajournal/vol42iss1.aspx
14. Jain P. K., and Joshi H. (2012) Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 02(06), 236-240. http://dx.doi.org/10.7324/JAPS.2012.2643
15. Abdel-Raheem S. A. A., Kamal El-Dean A. M., Abd ul-Malik M. A., Hassanien R., El-Sayed M. E. A., Abd-Ella A. A., Zawam S. A., and TolbaM. S. (2022) Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11(1), 23-28. http://dx.doi.org/10.5267/j.ccl.2021.10.001
16. Tolba M. S., Abd ul-Malik M. A., Kamal El-Dean A. M., Geies A. A., Radwan S. M., Zaki R. M., Sayed M., Mohamed S. K., and Abdel-Raheem S. A. A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett., 11(1), 29-42. http://dx.doi.org/10.5267/j.ccl.2021.9.007
17. Abd-Ella A. A., Metwally S. A., Abd ul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem S. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11(2), 157-172. http://dx.doi.org/10.5267/j.ccl.2022.2.004
18. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem S. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11(3), 285-290. http://dx.doi.org/10.5267/j.ccl.2022.3.006
19. Ahmed A. A., Mohamed S. K., and Abdel-Raheem S. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11(4), 359-370. http://dx.doi.org/10.5267/j.ccl.2022.6.001
20. Tolba M. S., Sayed M., Kamal El-Dean A. M., Hassanien R., Abdel-Raheem S. A. A., and Ahmed M. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14 (4) 334-345. http://doi.org/10.25135/acg.oc.114.2109.2214
21. Fong W. F., Shen X. L., Globisch C., Wiese M., Chen G. Y., Zhu G. Y., Yu Z. L., Tse A. K., and Hu Y. J. (2008), Methoxylation of 3',4'-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells. Bioorg. Med. Chem., 16, 3694-3703. https://doi.org/10.1016/j.bmc.2008.02.029
22. Riveiro M. E., De Kimpe N., Moglioni A., Vázquez R., Monczor F., Shayo C., and Davio C. (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 17(13), 1325-1338. https://doi.org/10.2174/092986710790936284
23. Hu Y. Q., Xu Z., Zhang S., Wu X., Ding J. W., Lv Z. S., and Feng L. S. (2017) Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 136, 122-130. https://doi.org/10.1016/j.ejmech.2017.05.004
24. Gilani A. H., Shaheen E., Saeed S. A., Bibi S., Irfanullah, Sadiq M., and Faizi S. (2000) Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine, 7(5), 423-6. https://doi.org/10.1016/s0944-7113(00)80064-1
25. Li H., Yao Y., and Li L. (2017) Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 69(10), 1253-1264. https://doi.org/10.1111/jphp.12774
26. Haziri A., Mazreku I., and Rudhani I. (2022) Anticoagulant activity of coumarin derivatives. Malaysian Applied Biology, 51(2), 107–109. https://doi.org/10.55230/mabjournal.v51i2.2246
27. Chen Y., Liu H. R., Liu H. S., Cheng M., Xia P., Qian K., Wu P. C., Lai C. Y., Xia Y., Yang Z. Y., Morris-Natschke S. L., and Lee K. H. (2012) Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur. J. Med. Chem., 49, 74-85. https://doi.org/10.1016/j.ejmech.2011.12.025
28. Nasr T., Bondock S., and Youns M. (2014) Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 76, 539-548. https://doi.org/10.1016/j.ejmech.2014.02.026
29. Bisi A., Cappadone C., Rampa A., Farruggia G., Sargenti A., Belluti F., Di Martino R.M.C., Malucelli E., Meluzzi A., Iotti S., and Gobbi S. (2017) Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem., 127, 577-585. https://doi.org/10.1016/j.ejmech.2017.01.020
30. Pangal A., Mujahid Y., Desai B., Shaikh J. A., and Ahmed K. (2022) Synthesis of 3-(2-(subsituted-(trifluoromethyl)phenylamino)acetyl)-2H-chromen-2-one derivatives as new anticancer agents. Curr. Chem. Lett., 11(1), 105–112. https://doi.org/10.5267/j.ccl.2021.8.004
31. M. Jenny, M. Klieber, D. Zaknun, S. Schroecksnadel, K. Kurz, M. Ledochowski, H. Schennach, D. Fuchs. In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm Res 60 (2011) 127-135. https://dx.doi.org/10.1007/s00011-010-0244-y
32. Pangal A., Shaikh J. A., Mulani M., and Ahmed K. (2021) Synthesis, anticancer activities and in silico screening of 3-acetylcoumarin hydrazone scaffolds. Journal of Advanced Scientific Research, 12(4-1), 225-233. https://doi.org/10.55218/JASR.s1202112425
33. Singh K., Gangrade A., Jana A., Mandal B. B., and Das N. (2019) Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring. ACS Omega, 4, 835−841. https://doi.org/10.1021/acsomega.8b02849
34. Yusuf I., Adamu U., and Sani U. (2020) Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 6(4), e03724. https://doi.org/10.1016/j.heliyon.2020.e03724
35. Daina A., Michielin O., and Zoete V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717-42730. https://doi.org/10.1038/srep42717
36. Mignani S., Rodrigues J., Tomas H., Jalal R., Singh P. P., Majoral J. P., and Vishwakarma R. A. (2018) Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov Today, 23(3), 605-615. https://doi.org/10.1016/j.drudis.2018.01.010
37. Barrios-González J., and Mejýa A. (2008) Production of antibiotics and other commercially valuable secondary metabolites. In: Current Developments in Solid-state Fermentation Pandey A., Soccol C. R., and Larroche C. (eds). Springer, New York, NY, USA, 302–336. https://doi.org/10.1007/978-0-387-75213-6_14
38. Xia D., Yang X., Liu W., Shen F., Pan J., Lin Y., Du N., Sun Y., and Xi X. (2017) Over-expression of CHAF1A in epithelial ovarian cancer can promote cell proliferation and inhibit cell apoptosis. Biochem Biophys Res Commun., 486(1), 191-197. https://doi.org/10.1016/j.bbrc.2017.03.026
2. Bansal Y., and Silakari O. (2014) Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 76, 31-42. https://doi.org/10.1016/j.ejmech.2014.01.060
3. Geldenhuys W. J., Youdim M. B.H., Carroll R. T., and Van der Schyf C. J., (2011) The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol., 94(4), 347-359. https://doi.org/10.1016/j.pneurobio.2011.04.010
4. Szymańska U. A., Kurzyna M., Segiet-Święcicka A., Kułak P., and Kosior D. A. (2022) Real-life trends of anticoagulant prescribing practices for pulmonary embolism – results of a single-center study based on the experience of a multi-profile clinical hospital. Scientiae Radices, 1(1), 36-45. http://doi.org/10.58332/v22i1a03
5. Melagraki G., Afantitis A., Igglessi-Markopoulou O., Detsi A, Koufaki M., Kontogiorgis C., and Hadjipavlou-Litina D. J. (2009) Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 44, 3020-3026. https://doi.org/10.1016/j.ejmech.2008.12.027
6. Sahoo C. R., Sahoo J., Mahapatra M., Lenka D., Sahu P. K., Dehury B., Padhy R. N., and Paidesetty S. K. (2021) Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem., 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
7. Ventola C. L. (2015) The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, 40(4), 277–283. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4378521/
8. Laxminarayan R., Mills A. J., Breman J. G., Measham A. R., Alleyne G., Claeson M., Jha P., Musgrove P., Chow J., Shahid-Salles S., and Jamison D. T. (2006) Advancement of global health: key messages from the Disease Control Priorities Project. Lancet, 367, 1193–1208. https://doi.org/10.1016/s0140-6736(06)68440-7
9. Ferreira L. G., Dos Santos R. N., Oliva G., and Andricopulo A. D. (2015) Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
10. Bhagat K., Bhagat J., Gupta M. K., Singh J. V., Gulati H. K., and Singh A. et. al. (2019) Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione–coumarin molecular hybrids. ACS Omega, 4(5), 8720-8730. https://doi.org/10.1021/acsomega.8b02481
11. Patel R. M., and Patel N. J. (2011) In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education and Research, 1, 52-68. https://japer.in/issue/volume-1-issue-1-2011
12. Abdalla A. E., and Roozen J. P. (1999) Effect of plant extracts on the oxidative stability of sunflower oil and emulsion. Food Chem., 64, 323–329. https://doi.org/10.1016/S0308-8146(98)00112-5
13. Pangal A., Shaikh J. A., and Khan E. M. (2017) Current developments of C3-substituted coumarin hybrids as anti-cancer agents. Int. J. Pharm. Sci. Rev. Res., 42(1), 161-168. https://www.globalresearchonline.net/pharmajournal/vol42iss1.aspx
14. Jain P. K., and Joshi H. (2012) Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 02(06), 236-240. http://dx.doi.org/10.7324/JAPS.2012.2643
15. Abdel-Raheem S. A. A., Kamal El-Dean A. M., Abd ul-Malik M. A., Hassanien R., El-Sayed M. E. A., Abd-Ella A. A., Zawam S. A., and TolbaM. S. (2022) Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11(1), 23-28. http://dx.doi.org/10.5267/j.ccl.2021.10.001
16. Tolba M. S., Abd ul-Malik M. A., Kamal El-Dean A. M., Geies A. A., Radwan S. M., Zaki R. M., Sayed M., Mohamed S. K., and Abdel-Raheem S. A. A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett., 11(1), 29-42. http://dx.doi.org/10.5267/j.ccl.2021.9.007
17. Abd-Ella A. A., Metwally S. A., Abd ul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem S. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11(2), 157-172. http://dx.doi.org/10.5267/j.ccl.2022.2.004
18. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem S. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11(3), 285-290. http://dx.doi.org/10.5267/j.ccl.2022.3.006
19. Ahmed A. A., Mohamed S. K., and Abdel-Raheem S. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11(4), 359-370. http://dx.doi.org/10.5267/j.ccl.2022.6.001
20. Tolba M. S., Sayed M., Kamal El-Dean A. M., Hassanien R., Abdel-Raheem S. A. A., and Ahmed M. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14 (4) 334-345. http://doi.org/10.25135/acg.oc.114.2109.2214
21. Fong W. F., Shen X. L., Globisch C., Wiese M., Chen G. Y., Zhu G. Y., Yu Z. L., Tse A. K., and Hu Y. J. (2008), Methoxylation of 3',4'-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells. Bioorg. Med. Chem., 16, 3694-3703. https://doi.org/10.1016/j.bmc.2008.02.029
22. Riveiro M. E., De Kimpe N., Moglioni A., Vázquez R., Monczor F., Shayo C., and Davio C. (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 17(13), 1325-1338. https://doi.org/10.2174/092986710790936284
23. Hu Y. Q., Xu Z., Zhang S., Wu X., Ding J. W., Lv Z. S., and Feng L. S. (2017) Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 136, 122-130. https://doi.org/10.1016/j.ejmech.2017.05.004
24. Gilani A. H., Shaheen E., Saeed S. A., Bibi S., Irfanullah, Sadiq M., and Faizi S. (2000) Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine, 7(5), 423-6. https://doi.org/10.1016/s0944-7113(00)80064-1
25. Li H., Yao Y., and Li L. (2017) Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 69(10), 1253-1264. https://doi.org/10.1111/jphp.12774
26. Haziri A., Mazreku I., and Rudhani I. (2022) Anticoagulant activity of coumarin derivatives. Malaysian Applied Biology, 51(2), 107–109. https://doi.org/10.55230/mabjournal.v51i2.2246
27. Chen Y., Liu H. R., Liu H. S., Cheng M., Xia P., Qian K., Wu P. C., Lai C. Y., Xia Y., Yang Z. Y., Morris-Natschke S. L., and Lee K. H. (2012) Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur. J. Med. Chem., 49, 74-85. https://doi.org/10.1016/j.ejmech.2011.12.025
28. Nasr T., Bondock S., and Youns M. (2014) Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 76, 539-548. https://doi.org/10.1016/j.ejmech.2014.02.026
29. Bisi A., Cappadone C., Rampa A., Farruggia G., Sargenti A., Belluti F., Di Martino R.M.C., Malucelli E., Meluzzi A., Iotti S., and Gobbi S. (2017) Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem., 127, 577-585. https://doi.org/10.1016/j.ejmech.2017.01.020
30. Pangal A., Mujahid Y., Desai B., Shaikh J. A., and Ahmed K. (2022) Synthesis of 3-(2-(subsituted-(trifluoromethyl)phenylamino)acetyl)-2H-chromen-2-one derivatives as new anticancer agents. Curr. Chem. Lett., 11(1), 105–112. https://doi.org/10.5267/j.ccl.2021.8.004
31. M. Jenny, M. Klieber, D. Zaknun, S. Schroecksnadel, K. Kurz, M. Ledochowski, H. Schennach, D. Fuchs. In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm Res 60 (2011) 127-135. https://dx.doi.org/10.1007/s00011-010-0244-y
32. Pangal A., Shaikh J. A., Mulani M., and Ahmed K. (2021) Synthesis, anticancer activities and in silico screening of 3-acetylcoumarin hydrazone scaffolds. Journal of Advanced Scientific Research, 12(4-1), 225-233. https://doi.org/10.55218/JASR.s1202112425
33. Singh K., Gangrade A., Jana A., Mandal B. B., and Das N. (2019) Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring. ACS Omega, 4, 835−841. https://doi.org/10.1021/acsomega.8b02849
34. Yusuf I., Adamu U., and Sani U. (2020) Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 6(4), e03724. https://doi.org/10.1016/j.heliyon.2020.e03724
35. Daina A., Michielin O., and Zoete V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717-42730. https://doi.org/10.1038/srep42717
36. Mignani S., Rodrigues J., Tomas H., Jalal R., Singh P. P., Majoral J. P., and Vishwakarma R. A. (2018) Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov Today, 23(3), 605-615. https://doi.org/10.1016/j.drudis.2018.01.010
37. Barrios-González J., and Mejýa A. (2008) Production of antibiotics and other commercially valuable secondary metabolites. In: Current Developments in Solid-state Fermentation Pandey A., Soccol C. R., and Larroche C. (eds). Springer, New York, NY, USA, 302–336. https://doi.org/10.1007/978-0-387-75213-6_14
38. Xia D., Yang X., Liu W., Shen F., Pan J., Lin Y., Du N., Sun Y., and Xi X. (2017) Over-expression of CHAF1A in epithelial ovarian cancer can promote cell proliferation and inhibit cell apoptosis. Biochem Biophys Res Commun., 486(1), 191-197. https://doi.org/10.1016/j.bbrc.2017.03.026