How to cite this paper
Fouad, M. (2023). Effect of peat, compost, and charcoal on transport of fipronil in clay loam soil and sandy clay loam soil.Current Chemistry Letters, 12(2), 281-288.
Refrences
1. Shamsan A. Q. S., Fouad M. R., Yacoob W. A. R. M., Abdul-Malik M. A., and Abdel-Raheem Sh. A. A. (2023) Performance of a variety of treatment processes to purify wastewater in the food industry. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2022.11.003).
2. El-Aswad A. F., Aly M. I., Fouad M. R., and Badawy M. E. (2019) Adsorption and thermodynamic parameters of chlorantraniliprole and dinotefuran on clay loam soil with difference in particle size and pH.J. Environ. Sci. Health B, 54 (6) 475-488.
3. Rasool S., Rasool T., and Gani K. M. (2022)A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Adv. Chem. Eng., 100301.
4. Hancock T. C., Sandstrom M. W., Vogel J. R., Webb R. M., Bayless E. R., andBarbash, J. E. (2008) Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA. J. Environ. Qual,37 (3) 1086-1100.
5. Badawy M. E., El-Aswad A. F., Aly M. I., and Fouad M. R. (2017) Effect of different soil treatments on dissipation of chlorantraniliprole and dehydrogenase activity using experimental modeling design. Int. J. Adv. Res. Chem. Sci., 4 (12) 7-23.
6. El-Aswad A. F., Fouad M. R., Badawy M. E., and Aly M. I. (2022) Effect of Calcium Carbonate Content on PotentialPesticide Adsorption and Desorption in Calcareous Soil. Commun. Soil Sci. Plant Anal., Accepted Manuscript (DOI:10.1080/00103624.2022.2146131).
7. Abd-Ella A. A., Metwally S. A., Abdul-Malik M. A., El-Ossaily Y. A., AbdElrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem Sh. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11 (2) 157-172.
8. Fouad M. R. (2022a) Validation of adsorption-desorption kinetic models for fipronil and thiamethoxam agrichemicalson three soils in Egypt. Egypt. J. Chem., Accepted Manuscript (DOI: 10.21608/EJCHEM.2022.143450.6289).
9. Fouad M. R. (2023) Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil. Curr. Chem. Lett., 12 (1) 207-216.
10. Shuai X., Chen J., and Ray C. (2012) Adsorption, transport and degradation of fiproniltermiticide in three Hawaii soils. Pest Manag. Sci.,68(5) 731-739.
11. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem Sh. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11 (3) 285-290.
12. Zhang Y., Wang M., Tan Y. J., Liu Y. P., Fu-cong Z., Yang Y., and Zhu C. H. (2013) Leaching patterns of fipronil in 3 kinds of soil in Hainan province, China. Afr. J. Agric. Res.,8 (17) 1725-1730.
13. Rashid M. F. M., Ramli S. M., and AbMajid A. H. (2018) Leaching of Termiticides Containing Bifenthrin, Fipronil and Imidacloprid in Different Types of Soils under Laboratory Conditions. Malaysian J. Soil Sci.,22, 77-92.
14. Doran G., Eberbach P., and Helliwell S. (2008)The mobility of thiobencarb and fipronil in two flooded rice-growing soils. J. Environ. Sci. HealthB,43(6) 490-497.
15. Fouad M. R., Shamsan A. Q. S., and Abdel-Raheem Sh. A. A. (2023) Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques.Curr. Chem. Lett., 12 (1) 185–192.
16. Lin S., Zhang L., Zhang P., Huang R., Khan M. M., Fahad S., and Zhang Z. (2022) Effects of glycosylation on the accumulation and transport of fipronil in earthworm (Eiseniafeotida).
17. Singh A., Srivastava A., and Srivastava P. C. (2016) Sorption–desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature. Pest Manag. Sci.,72(8), 1491-1499.
18. Kaid M., Ali A. E., Shamsan A. Q. S., Salem W. M., Younes S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., 11 (4) 415-422.
19. Weber J. B., Swain L. R., Strek H., andSartori J. (1986) Herbicide mobility in soil leaching columns. Research methods in weed science,3, 189-200.
20. Thanos D., andManiatis T. (1995) Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell, 83 (7) 1091-1100.
21. Mendham J., Denney R., Barnes J., Thomas M., Denney R., and Thomas M. (2000) Vogel's Quantitative Chemical Analysis. Prentice Hall, New York. 71, 65-70.
22. Gaber H.,Inskeep W., Comfort S., and El-Attar H. (1992) A test of the local equilibrium assumption for adsorption and transport of picloram. Soil Sci. Soc. Am. J.,56 (5) 1392-1400.
23. Perry D. G., Kusel S. J., and Perry L. C. (1988) Victims of peer aggression. Dev. Psychol., 24 (6) 807-814.
24. Ying G.G., and KookanaR.S. (2001) Sorption of fipronil and its metabolites on soils from South Australia. J. Environ. Sci. HealthB, 36 (5) 545–558.
25. Spomer N. A., and Kamble S. T.(2010) Sorption and desorption of fipronil in midwestern soils. Bull. Environ. Contam.,84 (2) 264–268.
26. Zhu G., Wu H., Guo J., and Kimaro F. M. (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollut., 153 (1) 35-44.
27. Kamble S. T., and Saran R. K. (2005) Effect of concentration on the adsorption of three termiticides in soil. Bull. Environ. Contam. Toxicol., 75 (6).
28. Horwood M. A. (2007) Rapid degradation of termiticides under field conditions. Aust. J. Entomol.,46 (1) 75–78.
29. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., 78 (8) 846-850.
30. Baranowski M., Dyksik M., and Płochock P. (2022) 2D Metal Halide Perovskites: A New Fascinating Playground for Exciton Fine Structure Investigation. Sci. Rad., 1 3-25.
31. Żmigrodzka M., Sadowski M., Kras J., Dresler E., Demchuk O. M., and Kula K. (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad., 1 26-35.
32. Szymańska U. A., Kurzyna M., Segiet-Święcicka A., Kułak P., and Kosio D. A. (2022) Real-life trends of anticoagulant prescribing practices for pulmonary embolism – results of a single-center study based on the experience of a multi-profile clinical hospital. Sci. Rad., 1 36-45.
33. Siadati S. A., and Rezazadeh S. (2022) The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Rad., 1 46-68.
34. Zawadzińska K., Gaurav G. K., and Jasiński R. (2022) Preparation of conjugated nitroalkenes: short review. Sci. Rad., 1 69-83.
35. Sadowskia M., Utnickaa J., Wójtowicza A., and Kulaa K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with
trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2022.11.004).
36. Siadati S. A. (2015) An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett., 56 (34) 4857-4863.
37. Dadras A., Rezvanfar M. A., Beheshti A., Naeimi S. S., and Siadati S. A. (2022) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Comb. Chem. High Throughput Screen., 25 (5) 838-846.
38. Beheshti A., Payab M., Seyyed-Ali-Karbasi V., and Siadati S. (2022) An unexpected aerobic oxidation of α-amino boronic acid part of Borteomib, leading to (thermal) decomposition of this very expensive anti-cancer API. Curr. Chem. Lett., 11 (2) 227-236.
39. Siadati S. A., and Rezazadeh S. (2018) Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem. Rev. Lett., 1 (2) 77-81.
2. El-Aswad A. F., Aly M. I., Fouad M. R., and Badawy M. E. (2019) Adsorption and thermodynamic parameters of chlorantraniliprole and dinotefuran on clay loam soil with difference in particle size and pH.J. Environ. Sci. Health B, 54 (6) 475-488.
3. Rasool S., Rasool T., and Gani K. M. (2022)A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Adv. Chem. Eng., 100301.
4. Hancock T. C., Sandstrom M. W., Vogel J. R., Webb R. M., Bayless E. R., andBarbash, J. E. (2008) Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA. J. Environ. Qual,37 (3) 1086-1100.
5. Badawy M. E., El-Aswad A. F., Aly M. I., and Fouad M. R. (2017) Effect of different soil treatments on dissipation of chlorantraniliprole and dehydrogenase activity using experimental modeling design. Int. J. Adv. Res. Chem. Sci., 4 (12) 7-23.
6. El-Aswad A. F., Fouad M. R., Badawy M. E., and Aly M. I. (2022) Effect of Calcium Carbonate Content on PotentialPesticide Adsorption and Desorption in Calcareous Soil. Commun. Soil Sci. Plant Anal., Accepted Manuscript (DOI:10.1080/00103624.2022.2146131).
7. Abd-Ella A. A., Metwally S. A., Abdul-Malik M. A., El-Ossaily Y. A., AbdElrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem Sh. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11 (2) 157-172.
8. Fouad M. R. (2022a) Validation of adsorption-desorption kinetic models for fipronil and thiamethoxam agrichemicalson three soils in Egypt. Egypt. J. Chem., Accepted Manuscript (DOI: 10.21608/EJCHEM.2022.143450.6289).
9. Fouad M. R. (2023) Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil. Curr. Chem. Lett., 12 (1) 207-216.
10. Shuai X., Chen J., and Ray C. (2012) Adsorption, transport and degradation of fiproniltermiticide in three Hawaii soils. Pest Manag. Sci.,68(5) 731-739.
11. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem Sh. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11 (3) 285-290.
12. Zhang Y., Wang M., Tan Y. J., Liu Y. P., Fu-cong Z., Yang Y., and Zhu C. H. (2013) Leaching patterns of fipronil in 3 kinds of soil in Hainan province, China. Afr. J. Agric. Res.,8 (17) 1725-1730.
13. Rashid M. F. M., Ramli S. M., and AbMajid A. H. (2018) Leaching of Termiticides Containing Bifenthrin, Fipronil and Imidacloprid in Different Types of Soils under Laboratory Conditions. Malaysian J. Soil Sci.,22, 77-92.
14. Doran G., Eberbach P., and Helliwell S. (2008)The mobility of thiobencarb and fipronil in two flooded rice-growing soils. J. Environ. Sci. HealthB,43(6) 490-497.
15. Fouad M. R., Shamsan A. Q. S., and Abdel-Raheem Sh. A. A. (2023) Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques.Curr. Chem. Lett., 12 (1) 185–192.
16. Lin S., Zhang L., Zhang P., Huang R., Khan M. M., Fahad S., and Zhang Z. (2022) Effects of glycosylation on the accumulation and transport of fipronil in earthworm (Eiseniafeotida).
17. Singh A., Srivastava A., and Srivastava P. C. (2016) Sorption–desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature. Pest Manag. Sci.,72(8), 1491-1499.
18. Kaid M., Ali A. E., Shamsan A. Q. S., Salem W. M., Younes S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., 11 (4) 415-422.
19. Weber J. B., Swain L. R., Strek H., andSartori J. (1986) Herbicide mobility in soil leaching columns. Research methods in weed science,3, 189-200.
20. Thanos D., andManiatis T. (1995) Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell, 83 (7) 1091-1100.
21. Mendham J., Denney R., Barnes J., Thomas M., Denney R., and Thomas M. (2000) Vogel's Quantitative Chemical Analysis. Prentice Hall, New York. 71, 65-70.
22. Gaber H.,Inskeep W., Comfort S., and El-Attar H. (1992) A test of the local equilibrium assumption for adsorption and transport of picloram. Soil Sci. Soc. Am. J.,56 (5) 1392-1400.
23. Perry D. G., Kusel S. J., and Perry L. C. (1988) Victims of peer aggression. Dev. Psychol., 24 (6) 807-814.
24. Ying G.G., and KookanaR.S. (2001) Sorption of fipronil and its metabolites on soils from South Australia. J. Environ. Sci. HealthB, 36 (5) 545–558.
25. Spomer N. A., and Kamble S. T.(2010) Sorption and desorption of fipronil in midwestern soils. Bull. Environ. Contam.,84 (2) 264–268.
26. Zhu G., Wu H., Guo J., and Kimaro F. M. (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollut., 153 (1) 35-44.
27. Kamble S. T., and Saran R. K. (2005) Effect of concentration on the adsorption of three termiticides in soil. Bull. Environ. Contam. Toxicol., 75 (6).
28. Horwood M. A. (2007) Rapid degradation of termiticides under field conditions. Aust. J. Entomol.,46 (1) 75–78.
29. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., 78 (8) 846-850.
30. Baranowski M., Dyksik M., and Płochock P. (2022) 2D Metal Halide Perovskites: A New Fascinating Playground for Exciton Fine Structure Investigation. Sci. Rad., 1 3-25.
31. Żmigrodzka M., Sadowski M., Kras J., Dresler E., Demchuk O. M., and Kula K. (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad., 1 26-35.
32. Szymańska U. A., Kurzyna M., Segiet-Święcicka A., Kułak P., and Kosio D. A. (2022) Real-life trends of anticoagulant prescribing practices for pulmonary embolism – results of a single-center study based on the experience of a multi-profile clinical hospital. Sci. Rad., 1 36-45.
33. Siadati S. A., and Rezazadeh S. (2022) The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Rad., 1 46-68.
34. Zawadzińska K., Gaurav G. K., and Jasiński R. (2022) Preparation of conjugated nitroalkenes: short review. Sci. Rad., 1 69-83.
35. Sadowskia M., Utnickaa J., Wójtowicza A., and Kulaa K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with
trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2022.11.004).
36. Siadati S. A. (2015) An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett., 56 (34) 4857-4863.
37. Dadras A., Rezvanfar M. A., Beheshti A., Naeimi S. S., and Siadati S. A. (2022) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Comb. Chem. High Throughput Screen., 25 (5) 838-846.
38. Beheshti A., Payab M., Seyyed-Ali-Karbasi V., and Siadati S. (2022) An unexpected aerobic oxidation of α-amino boronic acid part of Borteomib, leading to (thermal) decomposition of this very expensive anti-cancer API. Curr. Chem. Lett., 11 (2) 227-236.
39. Siadati S. A., and Rezazadeh S. (2018) Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem. Rev. Lett., 1 (2) 77-81.