How to cite this paper
Fouad, M., Shamsan, A & Abdel-Raheem, S. (2023). Toxicity of atrazine and metribuzin herbicides on earthworms (Aporrectodea caliginosa) by filter paper contact and soil mixing techniques.Current Chemistry Letters, 12(1), 185-192.
Refrences
1. Cara I. G., Filip M., Bulgariu L., Raus L., Topa D., and Jitareanu G. (2021) Environmental remediation of metribuzin herbicide by mesoporous carbon—rich from wheat straw. Appl. Sci., 11 (11) 4935.
2. Song Y., Zhu L. S., Wang J., Wang J. H., Liu W., and Xie H. (2009) DNA damage and effects on antioxidative enzymes in earthworm (Eiseniafoetida) induced by atrazine. Soil Biol. Biochem., 41 (5) 905-909.
3. Jones T. W., Kemp W. M., Stevenson J. C., and Means J. C. (1982) Degradation of atrazine in estuary water sediments and soils. J. Environ. Microbiol., 45 97-102.
4. Buhler D. D., Randall G. W., Koskinen W. C., and Wyse D. L. (1993) Atrazine and alachlor losses from subsurface tile drainage of a clay loam soil. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 22 (3) 583-588.
5. Barriuso E., and Houot S. (1996) Rapid meneralization of the s-triazine ring of atrazine in soils in relation to soil management. Soil Biol. Biochem., 28 (10-11) 1341-1348.
6. Stevens J. T. (1999) A risk characterization for atrazine: oncogenicity profile. J. Toxicol. Environ. Health - A, 56 (2) 69-109.
7. Hayes T. B., Collins A., Lee M., Mendoza M., Noriega N., Stuart A. A., and Vonk A. (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences (PNAS), 99 (8) 5476-5480.
8. Luo S., Ren L., Wu W., Chen Y., Li G., Zhang W., and Lin Z. (2022) Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. J. Hazard. Mater., 425 127778.
9. Matich E. K., Laryea J. A., Seely K. A., Stahr S., Su L. J., and Hsu P. C. (2021) Association between pesticide exposure and colorectal cancer risk and incidence: A systematic review. Ecotoxicol. Environ. Saf., 219 112327.
10. Wauchope R. D., Buttler T. M., Hornsby A. G., Augustijn-Beckers P. W. M., and Burt J. P. (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev. Environ. Contam. Toxicol., 123 1-155.
11. Jeschke P. (2016) Propesticides and their use as agrochemicals. Pest Manag. Sci., 72 (2) 210-225.
12. Edwards C. A., and Bohlen P. J. (1992) The effects of toxic chemicals on earthworms. Rev. Environ. Contam. Toxicol., 125 23-99.
13. Givaudan N., Binet F., Le Bot B., and Wiegand C. (2014) Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities. Environ. Pollut., 192 9-18.
14. Iordache M., and Borza I. (2010) Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil Environ., 56 (9) 401-407.
15. García-Pérez J. A., Alarcón-Gutiérrez E., Perroni Y., and Barois I. (2014) Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Appl. Soil Ecol., 83 230-237.
16. Li R., Meng Z., Sun W., Wu R., Jia M., Yan S., and Zhou Z. (2020) Bioaccumulation and toxic effects of penconazole in earthworms (Eiseniafetida) following soil exposure. Environ. Sci. Pollut. Res., 27 (30) 38056-38063.
17. Fouad M. R. (2021) Study on toxicity effect of bispyribac-sodium herbicide on earthworms by filter paper and soil mixing method. International Journal of Agriculture and Environmental Research (IJAER). 7 (4) 755-766.
18. Xu P., Liu D., Diao J., Lu D., and Zhou Z. (2009) Enantioselective acute toxicity and bioaccumulation of benalaxyl in earthworm (Eisenia fedtia). J. Agric. Food Chem., 57 (18) 8545-8549.
19. Addison J. A., and Holmes S. B. (1995) Comparison of forest soil microcosm and acute toxicity studies for determining effects of fenitrothion on earthworms. Ecotoxicol. Environ. Saf., 30 (2) 127-133.
20. Cheng Y., Zhu L., Song, W., Jiang C., Li B., Du Z., and Zhang K. (2020) Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eiseniafetida). Sci. Total Environ., 746 141280.
21. Kavitha V., Anandhan R., Alharbi N. S., Kadaikunnan S., Khaled J. M., Almanaa T. N., and Govindarajan M. (2020) Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampitomauritii (Kinberg). Microb. Pathog., 139 103893.
22. Sarikaya R., Selvı M., and Erkoç F. (2004) Investigation of acute toxicity of fenitrothion on peppered corydoras (Corydoras paleatus)(Jenyns, 1842). Chemosphere, 56 (7) 697-700.
23. Chi H. (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan.
24. Zhou S. P., Duan C. P., Wang X. H., Michelle W. H. G., Yu Z. F., Fu F. (2008) Assessing cypermethrin-contaminated soil with three different earthworm test methods. J. Environ. Sci., 20 1381-1385.
25. SamadiKalkhoran E., Alebrahim M. T., Mohammad Dust Chaman Abad H. R., Streibig J. C., and Ghavidel A. (2021) Investigation of Relative Toxicity of Some Combined Herbicides on Earthworm (Eiseniafetida L.) Biomass. Iran J. Soil Water Res., 52 (6) 1661-1672.
26. Li G., Li D., Rao H., and Liu X. (2022) Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. Sci. Total Environ., 807 150760.
27. Udovic M., and Lestan D. (2010) Eiseniafetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ. Pollut., 158 (8) 2766-2772.
28. Ahmed A. A., Mohamed S. K., and Abdel-Raheem Sh. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 (4) 359-370.
29. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Zaki R. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur. Chem. Bull., 10 (4) 225-229.
30. Tolba M. S., Sayed M., Kamal El-Dean A. M., Hassanien R., Abdel-Raheem Sh. A. A., and Ahmed M. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14 (4) 334-345.
31. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
32. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Hassanien R., El-Sayed M. E. A., Abd-Ella A. A., Zawam S. A., and Tolba M. S. (2022) Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11 (1) 23-28.
33. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2017) Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholiniumcyanopyridinethiolates and their Insecticidal Activity. J. Saud. Chem. Soc., 21 (1) 95–104.
34. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 (2019) 100-104.
35. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
36. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Abd-Ella A. A., Al-Taifi E. A., Hassanien R., El-Sayed M. E. A., Mohamed S. K., Zawam S. A., and Bakhite E. A. (2021) A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10 (4) 337-362.
37. Tolba M. S., Kamal El-Dean A. M., Ahmed M., Hassanien R., Sayed M., Zaki R. M., Mohamed S. K., Zawam S. A., and Abdel-Raheem Sh. A. A. (2022) Synthesis, reactions, and applications of pyrimidine derivatives. Curr. Chem. Lett., 11 (1) 121-138.
38. Abdelhafeez I. A., El-Tohamy S. A., Abdul-Malik M. A., Abdel-Raheem Sh. A. A., and El-Dars F. M. S. (2022) A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr. Chem. Lett., 11 (1) 43-62.
39. Tolba M. S., Abdul-Malik M. A., Kamal El-Dean A. M., Geies A. A., Radwan Sh. M., Zaki R. M., Sayed M., Mohamed S. K., and Abdel-Raheem Sh. A. A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett., 11 (1) 29-42.
40. Abdelhamid A. A., Elsaghier A. M. M., Aref S. A., Gad M. A., Ahmed N. A., and Abdel-Raheem Sh. A. A. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
41. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem Sh. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11 (3) 285-290.
42. Kaid M., Ali A. E., Shamsan A. Q. S., Salem W. M., Younes S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., 11 (4) 415-422.
43. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., 78 (8) 846-850.
44. Abd-Ella A. A., Metwally S. A., Abdul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem Sh. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11 (2) 157-172.
45. Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., 10 (4) 393-412.
46. Tolba M. S., Sayed M., Abdel-Raheem Sh. A. A., Gaber T. A., Kamal El-Dean A. M., and Ahmed M. (2021) Synthesis and spectral characterization of some new thiazolopyrimidine derivatives. Curr. Chem. Lett., 10 (4) 471-478.
47. Al-Taifi E. A., Abdel-Raheem Sh. A. A., and Bakhite E. A. (2016) Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines. Assiut University Journal of Chemistry (AUJC), 45 (1) 24-32.
48. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and spectral characterization of selective pyridine compounds as
bioactive agents. Curr. Chem. Lett., 10 (3) 255-260.
49. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2019) Design, Synthesis, Characterization, and Insecticidal Bioefficacy Screening of Some New Pyridine Derivatives. ACS Omega, 4 (5) 8406-8412.
50. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2014) Pyridine derivatives as insecticides. Part 1: Synthesis and toxicity of some pyridine derivatives against Cowpea Aphid, Aphis craccivora Koch (Homoptera: Aphididae). J. Agric. Food Chem., 62 (41) 9982–9986.
51. Bakhite E. A., Marae I. S., Gad M. A., Mohamed S. K., Mague J. T., and Abuelhassan S. (2022) Pyridine Derivatives as Insecticides. Part 3. Synthesis, Crystal Structure, and Toxicological Evaluation of Some New Partially Hydrogenated Isoquinolines against Aphis gossypii (Glover, 1887). J. Agric. Food Chem., Accepted Manuscript (10.1021/acs.jafc.2c02776).
52. Abdelhamid A. A., Salama K. S., Elsayed A. M., Gad M. A., and Ali Ali El-Remaily M. A. E. A. (2022) Synthesis and Toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, spodoptera littoralis (Boisduval). ACS omega, 7 (5) 3990-4000.
53. El-Gaby M., Ammar Y., Drar A., and Gad M. (2022) Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra Frugiperda (Lepidoptera: Noctuidae). Curr. Chem. Lett., 11 (3) 263-268.
54. Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnol. Rep., 24 e00394.
55. Yassin O., Ismail S., Gameh M., Khalil F., and Ahmed E. (2022) Evaluation of chemical composition of roots of three sugar beets varieties growing under different water deficit and harvesting dates in Upper Egypt. Curr. Chem. Lett., 11 (1) 1-10.
56. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize. Curr. Chem. Lett., 11 (2) 219-226.
57. Yassin O. M., Ismail S., Ali M., Khalil F., and Ahmed E. (2021) Optimizing Roots and Sugar Yields and Water Use Efficiency of Different Sugar Beet Varieties Grown Under Upper Egypt Conditions Using Deficit Irrigation and Harvesting Dates. Egypt. J. Soil Sci., 61 (3) 367-372.
58. Abdelgali A., Mustafa A. A., Ali S. A. M., Yassin O. M. (2018) Irrigation intervals as a guide to surface irrigation scheduling of maize in Upper Egypt. J. Biol. Chem. Environ. Sci., 13 (2) 121-133.
59. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of different water deficit and foliar spray of zinc and silicon treatments of chemical composition of maize. Curr. Chem. Lett., 11 (2) 191-198.