How to cite this paper
Kimi, M., Ngaini, Z & Hamdan, S. (2020). Starch functionalization of trimetallic W-Mg-Al oxide for oxidative desulphurisation of dibenzothiophene.Current Chemistry Letters, 9(3), 143-150.
Refrences
1 Shen D., Dai Y., Han J., Gan L., Liu J., and Long M. (2018) A nanocellulose template strategy for the controllable synthesis of tungsten-containing mesoporous silica for ultradeep oxidative desulfurization. Chem. Eng. J., 332, 563–571.
2 Méndez F. J., Franco-López O. E., Bokhimi X., Solís-Casados D. A., Escobar-Alarcón L., and Klimova T. E. (2017) Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal. B-Environ., 219, 479-491.
3 Sikarwar P., Kumar U. A., Gosu V., and Subbaramaiah V. (2018) Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash, J. Environ. Chem. Eng., 6(2) 1736–1744.
4 Houda S., Lancelot C., Blanchard, P., Poinel, L., and Lamonier, C. (2018) Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts, 8, 344.
5 Rezvani M. A., Oveisi M., and Asli M. A. N. (2015) Phosphotungestovanadate immobilized on PVA as an efficient and reusable nano catalyst for oxidative desulphurization of gasoline. J. Mol. Catal. A-Chem., 410, 121–132.
6 Otsuki S., Nonaka T., and Takashima N. (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energ. Fuels, 14 (6) 1232-1239.
7 Rakhmanov E. V., Tarakanova A. V., Valieva T., Akopyan A. V., Litvinova V. V., Maksimov A. L., Anisimov A. V., Vakarin S. V., Semerikova O. L., and Zaikov Y. P. (2014) Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals. Petrol. Chem+., 54 (1) 48-50.
8 Zhao R., Li X., Su J., Shi W., and Gao X. (2017) Preparation of WO3/C composite and its
application in oxidative desulfurization of fuel. China Pet. Process. Pe., 19 (2) 65-73.
9 Li X., Zhu H., Wang A., Wang Y., and Chen Y. (2013) Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and ɣ-Al2O3. Chem. Lett., 42 (1) 8-10.
10 Ho T. C. (2004) Deep HDS of diesel fuel: chemistry and catalysis. Catal. Today, 98 (1-2) 3–18.
11 Hu Y. H., and Ruckenstein E. (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Cataly. Rev., 44 (3) 423–453.
12 Guevara-Lara A., Cruz-Perez A. E., Contreras-Valdez Z., Mogica-Betancourt J., Alvarez-Hernandez A., and Vrinat M. (2010) Effect of Ni promoter in the oxide precursors of MoS2/MgO-Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catal. Today, 149 (3-4) 288–294.
13 Wu L., Jiao D., Wang J., Chen L., and Cao, F. (2009) The role of MgO in the formation of surface active phases of CoMo/Al2O3-MgO catalysts for hydrodesulfurization of dibenzothiophene. Catal. Commun., 11 (4) 302–305.
14 Vigneshwaran N., Kumar S., and Kathe, A. A. (2006) Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology, 17 (20) 5087–5095.
15 Lanje A. S., Sharma S. J., Ningthoujam R. S., Ahn J-S., and Pode R-B. (2013) Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol., 24 (1) 331–335.
16 Chancharoenrith S., Kamonsatikul C., Namkajorn M., Kiatisevi S., and Somsook E. (2015) Iron oxide/cassava starch-supported Ziegler–Natta catalysts for in situ ethylene polymerization. Carbohyd. Polym., 117, 319-323.
17 Nouri L., and Mohammadi Nafchi A. (2014) Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int. J. Biol. Macromol., 66, 254–259.
18 Tao X., Liu D., Cong W., and Huang L. (2018) Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement. Appl. Surf. Sci., 457, 572-579.
19 Singh A., Guleria A., Neogy S., and Rath M. C. (2018) UV induced synthesis of starch capped CdSe quantum dots: Functionalization with thiourea and application in sensing heavy metals ions in aqueous solution. Arab. J. Chem., In Press (DOI: 10.1016/j.arabjc.2018.09.006)
20 Fang J. M., Fowler P. A., and Tomkinson J. (2002) The preparation and characterization of a series of chemically modified photo starches. Carbohyd. Polym., 47, 245–252.
21 Kizil R., Irudayaraj J., and Seetharaman, K. (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem., 50 (14) 3912–3918.
22 Ding J., Liu Q., Zhang Z., Liu X., Zhao J., Cheng S., Zong B., and Dai W-L. (2015) Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B-Environ., 165, 511-518.
23 Muthuselvi C., Arunkumar A., and Rajaperumal G. (2016) Growth and characterization of oxalic acid doped with tryptophan crystal for antimicrobial activity. Der Chemica Sinica, 7(4) 55-62.
24 Zhang H., Li Y., Duan G., Liu G., and Cai W. (2014) Tungsten oxide nanostructures based on laser ablation in water and a hydrothermal route. CrystEngComm., 16, 2491-2498.
25 Ma J., Zhu W., Tian Y., and Wang Z. (2016) Preparation of Zinc Oxide-Starch Nanocomposite and Its Application on Coating. Nanoscale Res. Lett., 11, 200.
26 Ma X., Chang P. R., Yang J., and Yu J. (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohyd. Polym., 75, 472–478.
27 Ding J., Liu Q., Zhang Z., Liu X., Zhao J., Cheng S., and Zong B., Dai, W-L. (2015) Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B-Environ., 165, 511-518.
28 Rezvani M. A., Shaterian M., Akbarzadeh F., and Khandan S. (2018) Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chem. Eng. J., 333, 537–544.
29 Rezvani M. A., Khandan S., and Aghmasheh M. (2017) Synthesis and characterization of new nanocomposite TBA-PW11 Ni@NiO as an efficient and reusable heterogeneous catalyst in oxidative desulphurization of gasoline. J. Taiwan Inst. Chem. E., 77, 321-328.
2 Méndez F. J., Franco-López O. E., Bokhimi X., Solís-Casados D. A., Escobar-Alarcón L., and Klimova T. E. (2017) Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal. B-Environ., 219, 479-491.
3 Sikarwar P., Kumar U. A., Gosu V., and Subbaramaiah V. (2018) Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash, J. Environ. Chem. Eng., 6(2) 1736–1744.
4 Houda S., Lancelot C., Blanchard, P., Poinel, L., and Lamonier, C. (2018) Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts, 8, 344.
5 Rezvani M. A., Oveisi M., and Asli M. A. N. (2015) Phosphotungestovanadate immobilized on PVA as an efficient and reusable nano catalyst for oxidative desulphurization of gasoline. J. Mol. Catal. A-Chem., 410, 121–132.
6 Otsuki S., Nonaka T., and Takashima N. (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energ. Fuels, 14 (6) 1232-1239.
7 Rakhmanov E. V., Tarakanova A. V., Valieva T., Akopyan A. V., Litvinova V. V., Maksimov A. L., Anisimov A. V., Vakarin S. V., Semerikova O. L., and Zaikov Y. P. (2014) Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals. Petrol. Chem+., 54 (1) 48-50.
8 Zhao R., Li X., Su J., Shi W., and Gao X. (2017) Preparation of WO3/C composite and its
application in oxidative desulfurization of fuel. China Pet. Process. Pe., 19 (2) 65-73.
9 Li X., Zhu H., Wang A., Wang Y., and Chen Y. (2013) Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and ɣ-Al2O3. Chem. Lett., 42 (1) 8-10.
10 Ho T. C. (2004) Deep HDS of diesel fuel: chemistry and catalysis. Catal. Today, 98 (1-2) 3–18.
11 Hu Y. H., and Ruckenstein E. (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Cataly. Rev., 44 (3) 423–453.
12 Guevara-Lara A., Cruz-Perez A. E., Contreras-Valdez Z., Mogica-Betancourt J., Alvarez-Hernandez A., and Vrinat M. (2010) Effect of Ni promoter in the oxide precursors of MoS2/MgO-Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catal. Today, 149 (3-4) 288–294.
13 Wu L., Jiao D., Wang J., Chen L., and Cao, F. (2009) The role of MgO in the formation of surface active phases of CoMo/Al2O3-MgO catalysts for hydrodesulfurization of dibenzothiophene. Catal. Commun., 11 (4) 302–305.
14 Vigneshwaran N., Kumar S., and Kathe, A. A. (2006) Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology, 17 (20) 5087–5095.
15 Lanje A. S., Sharma S. J., Ningthoujam R. S., Ahn J-S., and Pode R-B. (2013) Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol., 24 (1) 331–335.
16 Chancharoenrith S., Kamonsatikul C., Namkajorn M., Kiatisevi S., and Somsook E. (2015) Iron oxide/cassava starch-supported Ziegler–Natta catalysts for in situ ethylene polymerization. Carbohyd. Polym., 117, 319-323.
17 Nouri L., and Mohammadi Nafchi A. (2014) Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int. J. Biol. Macromol., 66, 254–259.
18 Tao X., Liu D., Cong W., and Huang L. (2018) Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement. Appl. Surf. Sci., 457, 572-579.
19 Singh A., Guleria A., Neogy S., and Rath M. C. (2018) UV induced synthesis of starch capped CdSe quantum dots: Functionalization with thiourea and application in sensing heavy metals ions in aqueous solution. Arab. J. Chem., In Press (DOI: 10.1016/j.arabjc.2018.09.006)
20 Fang J. M., Fowler P. A., and Tomkinson J. (2002) The preparation and characterization of a series of chemically modified photo starches. Carbohyd. Polym., 47, 245–252.
21 Kizil R., Irudayaraj J., and Seetharaman, K. (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem., 50 (14) 3912–3918.
22 Ding J., Liu Q., Zhang Z., Liu X., Zhao J., Cheng S., Zong B., and Dai W-L. (2015) Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B-Environ., 165, 511-518.
23 Muthuselvi C., Arunkumar A., and Rajaperumal G. (2016) Growth and characterization of oxalic acid doped with tryptophan crystal for antimicrobial activity. Der Chemica Sinica, 7(4) 55-62.
24 Zhang H., Li Y., Duan G., Liu G., and Cai W. (2014) Tungsten oxide nanostructures based on laser ablation in water and a hydrothermal route. CrystEngComm., 16, 2491-2498.
25 Ma J., Zhu W., Tian Y., and Wang Z. (2016) Preparation of Zinc Oxide-Starch Nanocomposite and Its Application on Coating. Nanoscale Res. Lett., 11, 200.
26 Ma X., Chang P. R., Yang J., and Yu J. (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohyd. Polym., 75, 472–478.
27 Ding J., Liu Q., Zhang Z., Liu X., Zhao J., Cheng S., and Zong B., Dai, W-L. (2015) Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B-Environ., 165, 511-518.
28 Rezvani M. A., Shaterian M., Akbarzadeh F., and Khandan S. (2018) Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chem. Eng. J., 333, 537–544.
29 Rezvani M. A., Khandan S., and Aghmasheh M. (2017) Synthesis and characterization of new nanocomposite TBA-PW11 Ni@NiO as an efficient and reusable heterogeneous catalyst in oxidative desulphurization of gasoline. J. Taiwan Inst. Chem. E., 77, 321-328.