How to cite this paper
Mehdipour, M & Khodabakhshi, M. (2020). 2-(Aminomethyl)benzimidazole/Cu2+ immobilized on Fe3O4@SiO2: a convenient magnetic nanocatalyst for click reaction of aryl iodide/benzyl halide, sodium azide and terminal alkyne.Current Chemistry Letters, 9(1), 9-18.
Refrences
1.Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. En, 48(38), 6974-6998.
2.Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit B., & Fokin, V. V. (2004). Efficiency and fidelity in a click‐chemistry route to triazole dendrimers by the copper (I)‐catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. En, 43(30), 3928-3932.
3.a)Wu, P., Malkoch, M., Hunt, J. N., Vestberg, R., Kaltgrad, E., Finn, M. G., & Hawker, C. J. (2005). Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun., (46), 5775-5777.b) Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. En, 41(14), 2596-2599.
4. Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chem. Soc. Rev., 36(8), 1249-1262.
5. Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discov. Today, 8(24), 1128-1137.
6. Appukkuttan, P., Dehaen, W., Fokin, V. V., & Van der Eycken, E. (2004). A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper (I)-catalyzed three-component reaction. Org. Lett., 6(23), 4223-4225.
7. Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater., 19(17), 2197-2208.
8. Bouillon, C., Meyer, A., Vidal, S., Jochum, A., Chevolot, Y., Cloarec, J. P., ... & Morvan, F. (2006). Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. The J. Org. Chem., 71(12), 4700-4702.
9. Finn, M. G., & Fokin, V. V. (2010). Click chemistry: function follows form. Chem. Soc. Rev., 39(4), 1231-1232.
10. Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G., & Genazzani, A. A. (2008). Click chemistry reactions in medicinal chemistry: Applications of the 1, 3‐dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 28(2), 278-308.
11. Ertl, G., Knözinger, H., & Weitkamp, J. (Eds.). (2008). Preparation of solid catalysts. John Wiley & Sons.
12. Boudart, M. (1985). Heterogeneous catalysis by metals. J.Mol. Catal., 30(1-2), 27-38.
13. Boudart, M. (1969). Catalysis by supported metals. In Advances in catalysis (Vol. 20, pp. 153-166). Academic Press.
14. Wan, W., Ammal, S. C., Lin, Z., You, K. E., Heyden, A., & Chen, J. G. (2018). Controlling reaction pathways of selective C–O bond cleavage of glycerol. Nat. Commun., 9(1), 4612.
15. Lum, Y., & Ager, J. W. (2019). Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO 2 reduction. Nat. Catal., 2(1), 86.
16. Marberger, A., Petrov, A. W., Steiger, P., Elsener, M., Kröcher, O., Nachtegaal, M., & Ferri, D. (2018). Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal., 1(3), 221.
17. Marcinkowski, M. D., Darby, M. T., Liu, J., Wimble, J. M., Lucci, F. R., Lee, S., ... & Sykes, E. C. H. (2018). Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem., 10(3), 325.
18. Liu, L., & Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev., 118(10), 4981-5079.
19. Tourani, H., Naimi-Jamal, M. Reza., Panahi, L., Dekamin, M. G. (2019). Nanoporous metal-organic framework Cu2(BDC)2(DABCO) as an efficient heterogeneous catalyst for one-pot facile synthesis of 1,2,3-triazole derivatives in ethanol and evaluating antimicrobial activity of the novel derivatives. Sci. Iran. DOI:10.24200/SCI.2018.50731.1841
2.Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit B., & Fokin, V. V. (2004). Efficiency and fidelity in a click‐chemistry route to triazole dendrimers by the copper (I)‐catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. En, 43(30), 3928-3932.
3.a)Wu, P., Malkoch, M., Hunt, J. N., Vestberg, R., Kaltgrad, E., Finn, M. G., & Hawker, C. J. (2005). Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun., (46), 5775-5777.b) Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. En, 41(14), 2596-2599.
4. Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chem. Soc. Rev., 36(8), 1249-1262.
5. Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discov. Today, 8(24), 1128-1137.
6. Appukkuttan, P., Dehaen, W., Fokin, V. V., & Van der Eycken, E. (2004). A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper (I)-catalyzed three-component reaction. Org. Lett., 6(23), 4223-4225.
7. Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater., 19(17), 2197-2208.
8. Bouillon, C., Meyer, A., Vidal, S., Jochum, A., Chevolot, Y., Cloarec, J. P., ... & Morvan, F. (2006). Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. The J. Org. Chem., 71(12), 4700-4702.
9. Finn, M. G., & Fokin, V. V. (2010). Click chemistry: function follows form. Chem. Soc. Rev., 39(4), 1231-1232.
10. Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G., & Genazzani, A. A. (2008). Click chemistry reactions in medicinal chemistry: Applications of the 1, 3‐dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 28(2), 278-308.
11. Ertl, G., Knözinger, H., & Weitkamp, J. (Eds.). (2008). Preparation of solid catalysts. John Wiley & Sons.
12. Boudart, M. (1985). Heterogeneous catalysis by metals. J.Mol. Catal., 30(1-2), 27-38.
13. Boudart, M. (1969). Catalysis by supported metals. In Advances in catalysis (Vol. 20, pp. 153-166). Academic Press.
14. Wan, W., Ammal, S. C., Lin, Z., You, K. E., Heyden, A., & Chen, J. G. (2018). Controlling reaction pathways of selective C–O bond cleavage of glycerol. Nat. Commun., 9(1), 4612.
15. Lum, Y., & Ager, J. W. (2019). Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO 2 reduction. Nat. Catal., 2(1), 86.
16. Marberger, A., Petrov, A. W., Steiger, P., Elsener, M., Kröcher, O., Nachtegaal, M., & Ferri, D. (2018). Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal., 1(3), 221.
17. Marcinkowski, M. D., Darby, M. T., Liu, J., Wimble, J. M., Lucci, F. R., Lee, S., ... & Sykes, E. C. H. (2018). Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem., 10(3), 325.
18. Liu, L., & Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev., 118(10), 4981-5079.
19. Tourani, H., Naimi-Jamal, M. Reza., Panahi, L., Dekamin, M. G. (2019). Nanoporous metal-organic framework Cu2(BDC)2(DABCO) as an efficient heterogeneous catalyst for one-pot facile synthesis of 1,2,3-triazole derivatives in ethanol and evaluating antimicrobial activity of the novel derivatives. Sci. Iran. DOI:10.24200/SCI.2018.50731.1841