How to cite this paper
Fiocco, E. (2025). Data-driven methodology for identifying the best influencers for a brand: A case study on Anemonia.Management Science Letters , 15(1), 23-30.
Refrences
Agarwal, S., & Damle, M. (2020). Sentiment analysis to evaluate influencer marketing: Exploring to identify the parame-ters of influence. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(6), 4784-4800.
Belanche, D., Casaló, L. V., Flavián, M., & Ibáñez-Sánchez, S. (2021). Understanding influencer marketing: The role of congruence between influencers, products and consumers. Journal of Business Research, 132, 186-195.
Carrington, P. J., Scott, J., & Wasserman, S. (Eds.). (2005). Models and methods in social network analysis (Vol. 28). Cambridge university press.
Dhanesh, G. S., & Duthler, G. (2019). Relationship management through social media influencers: Effects of followers’ awareness of paid endorsement. Public relations review, 45(3), 101765.
Freeman, L. C. (2002). Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociol-ogy. Londres: Routledge, 1, 238-263
Gräve, J. F., & Greff, A. (2018, July). Good KPI, good influencer? Evaluating success metrics for social media influenc-ers. In Proceedings of the 9th International Conference on Social Media and Society (pp. 291-295).
Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media (Vol. 8, No. 1, pp. 216-225).
Lee, D., Lee, S., & Park, S. (2019). A study on influencer characteristic factors by using AHP. Journal of the Society of Korea Industrial and Systems Engineering, 42(3), 184-1
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams en-gineering journal, 5(4), 1093-1113.
Saaty, T. L. (1990). Multicriteria decision making: The analytic hierarchy process: planning, priority setting, resource al-location, 2, 1-20.
Tan, W. B., & Lim, T. M. (2021, October). A study on the centrality measures to determine social media influencers in twitter. In International Conference on Digital Transformation and Applications (ICDXA) (Vol. 25, p. 26).
Tan, W. B., & Lim, T. M. (2022). A study on the centrality measures to determine social media influencers of food-beverage products in Twitter.
Belanche, D., Casaló, L. V., Flavián, M., & Ibáñez-Sánchez, S. (2021). Understanding influencer marketing: The role of congruence between influencers, products and consumers. Journal of Business Research, 132, 186-195.
Carrington, P. J., Scott, J., & Wasserman, S. (Eds.). (2005). Models and methods in social network analysis (Vol. 28). Cambridge university press.
Dhanesh, G. S., & Duthler, G. (2019). Relationship management through social media influencers: Effects of followers’ awareness of paid endorsement. Public relations review, 45(3), 101765.
Freeman, L. C. (2002). Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociol-ogy. Londres: Routledge, 1, 238-263
Gräve, J. F., & Greff, A. (2018, July). Good KPI, good influencer? Evaluating success metrics for social media influenc-ers. In Proceedings of the 9th International Conference on Social Media and Society (pp. 291-295).
Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media (Vol. 8, No. 1, pp. 216-225).
Lee, D., Lee, S., & Park, S. (2019). A study on influencer characteristic factors by using AHP. Journal of the Society of Korea Industrial and Systems Engineering, 42(3), 184-1
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams en-gineering journal, 5(4), 1093-1113.
Saaty, T. L. (1990). Multicriteria decision making: The analytic hierarchy process: planning, priority setting, resource al-location, 2, 1-20.
Tan, W. B., & Lim, T. M. (2021, October). A study on the centrality measures to determine social media influencers in twitter. In International Conference on Digital Transformation and Applications (ICDXA) (Vol. 25, p. 26).
Tan, W. B., & Lim, T. M. (2022). A study on the centrality measures to determine social media influencers of food-beverage products in Twitter.