How to cite this paper
Alberto, H., Nataly, A., Román, D., Raidith, R., Pierre, V., Miguel, V., David, C & Marleny, Q. (2024). Evaluation of factors associated with the adoption of ICT in education using machine learning.International Journal of Data and Network Science, 8(4), 2563-2580.
Refrences
Abnoosian, K., Farnoosh, R., & Behzadi, M. H. (2023). Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. BMC Bioinformatics, 24(1), 1–24. https://doi.org/10.1186/S12859-023-05465-Z/FIGURES/7
Agasisti, T., Antequera, G., & Delprato, M. (2023). Technological resources, ICT use and schools efficiency in Latin America – Insights from OECD PISA 2018. International Journal of Educational Development, 99, 102757. https://doi.org/10.1016/J.IJEDUDEV.2023.102757
AGETIC. (2019). Encuesta Final-Profesores de Inclusión Digital - Conjuntos de datos - Datos Abiertos Bolivia.
Al-Mamary, Y. H. S. (2022). Examining the factors affecting the use of ICT in teaching in Yemeni schools. Journal of Public Affairs, 22(1), e2330. https://doi.org/10.1002/PA.2330
Albulayhi, K., Al-Haija, Q. A., Alsuhibany, S. A., Jillepalli, A. A., Ashrafuzzaman, M., & Sheldon, F. T. (2022). IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method. Applied Sciences 2022, Vol. 12, Page 5015, 12(10), 5015. https://doi.org/10.3390/APP12105015
Alghamdi, A. S., & Rahman, A. (2023). Data Mining Approach to Predict Success of Secondary School Students: A Saudi Arabian Case Study. Education Sciences 2023, Vol. 13, Page 293, 13(3), 293. https://doi.org/10.3390/EDUCSCI13030293
Alhamad, A. Q. M., Akour, I., Alshurideh, M., Al-Hamad, A. Q., Kurdi, B. Al, & Alzoubi, H. (2021). Predicting the intention to use google glass: A comparative approach using machine learning models and PLS-SEM. Volume 5, Issue 3, Pages 311 - 320, 5(3), 311–320. https://doi.org/10.5267/j.ijdns.2021.6.002
Alsahaf, A., Petkov, N., Shenoy, V., & Azzopardi, G. (2022). A framework for feature selection through boosting. Expert Systems with Applications, 187, 115895. https://doi.org/10.1016/J.ESWA.2021.115895
Baena-Morales, S., Martinez-Roig, R., & Hernádez-Amorós, M. J. (2020). Sustainability and Educational Technology—A Description of the Teaching Self-Concept. Sustainability, 12(24), 10309. https://doi.org/10.3390/SU122410309
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33–44. https://doi.org/10.1016/J.CHEMOLAB.2017.12.004
Bansal, M. (2023). Use of information and communication technology (ICT) in education system. International Journal of Multidisciplinary Trends, 5(3), 04–06. https://www.multisubjectjournal.com/archives/2023.v5.i3.A.263
Barraza, N., Moro, S., Ferreyra, M., & de la Peña, A. (2019). Mutual information and sensitivity analysis for feature selection in customer targeting: A comparative study. Journal of Information Science, 45(1), 53–67. https://doi.org/10.1177/0165551518770967/ASSET/IMAGES/LARGE/10.1177_0165551518770967-FIG4.JPEG
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735
Bergstra, J., Ca, J. B., & Ca, Y. B. (2012). Random Search for Hyper-Parameter Optimization Yoshua Bengio. Journal of Machine Learning Research, 13, 281–305. http://scikit-learn.sourceforge.net.
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484. https://doi.org/10.1002/WIDM.1484
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M., & Herrera, F. (2014). A review of microarray datasets and applied feature selection methods. Information Sciences, 282, 111–135. https://doi.org/10.1016/J.INS.2014.05.042
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. https://doi.org/10.1016/J.CSDA.2019.106839
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Classification and Regression Trees, 1–358. https://doi.org/10.1201/9781315139470/CLASSIFICATION-REGRESSION-TREES-LEO-BREIMAN
Brownlee, J., Sanderson, M., Koshy, A., Cheremskoy, A., & Halfyard, J. (2020). Machine Learning Mastery With Python: Data Cleaning, Feature Selection, and Data Transforms in Python.
Cabellos, B., Siddiq, F., & Scherer, R. (2024). The moderating role of school facilitating conditions and attitudes towards ICT on teachers’ ICT use and emphasis on developing students’ digital skills. Computers in Human Behavior, 150, 107994. https://doi.org/10.1016/J.CHB.2023.107994
Campos Cruz, H., Ramírez Sánchez, M. Y., Campos Cruz, H., & Ramírez Sánchez, M. Y. (2018). Las TIC en los procesos educativos de un centro público de investigación. Apertura (Guadalajara, Jal.), 10(1), 56–70. https://doi.org/10.32870/AP.V10N1.1160
Cang, S., & Yu, H. (2012). Mutual information based input feature selection for classification problems. Decision Support Systems, 54(1), 691–698. https://doi.org/10.1016/J.DSS.2012.08.014
Celbiş, M. G., Wong, P. H., Kourtit, K., & Nijkamp, P. (2023). Job Satisfaction and the ‘Great Resignation’: An Exploratory Machine Learning Analysis. Social Indicators Research, 170(3), 1097–1118. https://doi.org/10.1007/S11205-023-03233-3/FIGURES/6
Cerda, J. L., & Villarroel Del, L. P. (n.d.). Evaluación de la concordancia inter-observador en investigación pediátrica: Coeficiente de Kappa.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/J.COMPELECENG.2013.11.024
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672
Chen, X., & Jeong, J. C. (2007). Enhanced recursive feature elimination. Sixth International Conference on Machine Learning and Applications (ICMLA 2007), 429–435. https://doi.org/10.1109/ICMLA.2007.35
Choong, A. C. H., & Lee, N. K. (2017). Evaluation of convolutionary neural networks modeling of DNA sequences using ordinal versus one-hot encoding method. 1st International Conference on Computer and Drone Applications: Ethical Integration of Computer and Drone Technology for Humanity Sustainability, IConDA 2017, 2018-Janua, 60–65. https://doi.org/10.1109/ICONDA.2017.8270400
Contreras, L. E., Fuentes, H. J., Rodríguez, J. I., Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233
Cruz Huacac, R. D. (2019). Uso de Máquina de Soporte Vectorial para Predicción de Resistencia a la Compresión de Concreto [Universidad Nacional de San Agustín de Arequipa]. http://repositorio.unsa.edu.pe/handle/UNSA/9092
CTIC. (2023). CTIC – Consejo de Tecnologías e Información del Estado Plurinacional de Bolivia.
Datos Abiertos. (2019). Bienvenida - Datos Abiertos Bolivia.
Dhal, P., & Azad, C. (2021). A comprehensive survey on feature selection in the various fields of machine learning. Applied Intelligence, 52(4), 4543–4581. https://doi.org/10.1007/S10489-021-02550-9
Dieste, B., Coma, T., & Blasco-Serrano, A. C. (2019). Inclusión de los Objetivos de Desarrollo Sostenible en el Currículum de Educación Primaria y Secundaria en Escuelas Rurales de Zaragoza. Revista Internacional de Educación Para La Justicia Social, 8(1), 97–115. https://doi.org/10.15366/RIEJS2019.8.1.006
Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021). Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics, 8(4), 79. https://doi.org/10.3390/INFORMATICS8040079
Fallucchi, F., Coladangelo, M., Giuliano, R., & De Luca, E. W. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 1–17. https://doi.org/10.3390/computers9040086
Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine on JSTOR. The Annals of Statistics, 29(5), 1189–1232. https://www.jstor.org/stable/2699986
Frye, M., Mohren, J., & Schmitt, R. H. (2021). Benchmarking of Data Preprocessing Methods for Machine Learning-Applications in Production. Procedia CIRP, 104, 50–55. https://doi.org/10.1016/J.PROCIR.2021.11.009
Giselle Fernández-Godino, P. M. (2016). Review of multi-fidelity models. https://arxiv.org/abs/1609.07196v4
González-Zamar, M. D., Abad-Segura, E., López-Meneses, E., & Gómez-Galán, J. (2020). Managing ICT for Sustainable Education: Research Analysis in the Context of Higher Education. Sustainability, 12(19), 8254. https://doi.org/10.3390/SU12198254
Graham, M. A., Stols, G., & Kapp, R. (2020). Teacher Practice and Integration of ICT: Why Are or Aren’t South African Teachers Using ICTs in Their Classrooms. International Journal of Instruction, 13(2), 749–766. https://doi.org/10.29333/iji.2020.13251a
Guney, H., & Oztoprak, H. (2022). A robust ensemble feature selection technique for high-dimensional datasets based on minimum weight threshold method. Computational Intelligence, 38(5), 1616–1658. https://doi.org/10.1111/COIN.12524
Habibi, A., Razak, R. A., Yusop, F. D., Mukminin, A., & Yaqin, L. N. (2020). Factors Affecting ICT Integration During Teaching Practices: A Multiple Case Study of Three Indonesian Universities. The Qualitative Report, 25(5), 1127–1144. https://doi.org/10.46743/2160-3715/2020.4150
Hasanin, T., Khoshgoftaar, T. M., Leevy, J. L., & Bauder, R. A. (2019). Severely imbalanced Big Data challenges: investigating data sampling approaches. Journal of Big Data, 6(1), 1–25. https://doi.org/10.1186/S40537-019-0274-4/FIGURES/3
He, H., & Ma, Y. (2013). Imbalanced learning: Foundations, algorithms, and applications. In Imbalanced Learning: Foundations, Algorithms, and Applications. wiley. https://doi.org/10.1002/9781118646106
Holicza, B., & Kiss, A. (2023). Predicting and Comparing Students’ Online and Offline Academic Performance Using Machine Learning Algorithms. Behavioral Sciences, 13(4), 289. https://doi.org/10.3390/BS13040289
Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/J.INFSOF.2015.07.004
Hussain, S., & Khan, M. Q. (2023). Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning. Annals of Data Science, 10(3), 637–655. https://doi.org/10.1007/S40745-021-00341-0/FIGURES/4
Ifinedo, E., Rikala, J., & Hämäläinen, T. (2020). Factors affecting Nigerian teacher educators’ technology integration: Considering characteristics, knowledge constructs, ICT practices and beliefs. Computers & Education, 146, 103760. https://doi.org/10.1016/J.COMPEDU.2019.103760
Irshad, M., Qureshi, M. A., Saraih, U. N., & Ahmad, S. F. (2023). Impact of institutional climate on the student’s engagement and learning outcomes in private sector universities of Karachi. International Journal of Management in Education, 17(3), 297–322. https://doi.org/10.1504/IJMIE.2023.130674
Jain, P. K., Jain, M., & Pamula, R. (2020). Explaining and predicting employees’ attrition: a machine learning approach. SN Applied Sciences, 2(4), 1–11. https://doi.org/10.1007/S42452-020-2519-4/TABLES/5
Jin, Y., Xu, S., Shao, Z., Luo, X., Wang, Y., Yu, Y., & Wang, Y. (2024). Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis. Journal of Affective Disorders, 345, 300–310. https://doi.org/10.1016/J.JAD.2023.10.101
Kaps, A., Lehrer, T., Lepenies, I., Wagner, M., & Duddeck, F. (2023). Multi-fidelity optimization of metal sheets concerning manufacturability in deep-drawing processes. Structural and Multidisciplinary Optimization, 66(8), 1–16. https://doi.org/10.1007/S00158-023-03631-8/FIGURES/13
Kler, S. (2014). ICT Integration in Teaching and Learning: Empowerment of Education with Technology. Issues and Ideas in Education, 2(2), 255–271. https://doi.org/10.15415/IIE.2014.22019
Lawrence, J. E., & Tar, U. A. (2018). Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International, 55(1), 79–105. https://doi.org/10.1080/09523987.2018.1439712
Lee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction. Applied Sciences 2019, Vol. 9, Page 3093, 9(15), 3093. https://doi.org/10.3390/APP9153093
Lee, Y. C., Malcein, L. A., & Kim, S. C. (2021). Information and communications technology (ICT) usage during COVID-19: Motivating factors and implications. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/IJERPH18073571/S1
Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 1–30. https://doi.org/10.1186/S40537-018-0151-6/TABLES/5
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2016). Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6). https://doi.org/10.1145/3136625
Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. 1. https://arxiv.org/abs/1912.06059v1
Lovera, F. A., & Cardinale, Y. (2023). Análisis de sentimientos en Twitter: Un estudio comparativo. Revista Científica de Sistemas e Informática, 3(1), e418–e418. https://doi.org/10.51252/RCSI.V3I1.418
Madni, S. H. H., Ali, J., Husnain, H. A., Masum, M. H., Mustafa, S., Shuja, J., Maray, M., & Hosseini, S. (2022). Factors Influencing the Adoption of IoT for E-Learning in Higher Educational Institutes in Developing Countries. Frontiers in Psychology, 13, 915596. https://doi.org/10.3389/FPSYG.2022.915596/BIBTEX
Mahmudah, K. R., Purnama, B., Indriani, F., & Satou, K. (2021). Machine learning algorithms for predicting chronic obstructive pulmonary disease from gene expression data with class imbalance. BIOINFORMATICS 2021 - 12th International Conference on Bioinformatics Models, Methods and Algorithms; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, 148–153. https://doi.org/10.5220/0010316501480153
Mandal, M., Singh, P. K., Ijaz, M. F., Shafi, J., & Sarkar, R. (2021). A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification. Sensors, 21(16), 5571. https://doi.org/10.3390/S21165571
Márquez, S., Jesús, J., Linares, G., Del Carmen Pérez-Fuentes, M., & Makrakis, V. (2023). Using the DREAM Methodology for Course Assessment in the Field of ICT-Enabled Education for Sustainability. European Journal of Investigation in Health, Psychology and Education, 13(7), 1378–1391. https://doi.org/10.3390/EJIHPE13070100
Miao, J., & Niu, L. (2016). A Survey on Feature Selection. Procedia Computer Science, 91, 919–926. https://doi.org/10.1016/J.PROCS.2016.07.111
Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 2020 11th International Conference on Information and Communication Systems, ICICS 2020, 243–248. https://doi.org/10.1109/ICICS49469.2020.239556
Mukasheva, M., Mukhiyadin, A., Makhazhanova, U., & Serikbayeva, S. (2023). The Behaviour of the Ensemble Learning Model in Analysing Educational Data on COVID-19. 13(12), 1868–1878. https://doi.org/10.18178/ijiet.2023.13.12.2000
Olabanjo, O. A., Wusu, A. S., & Manuel, M. (2022). A machine learning prediction of academic performance of secondary school students using radial basis function neural network. Trends in Neuroscience and Education, 29, 100190. https://doi.org/10.1016/J.TINE.2022.100190
Padimi, V., Telu, V. S., & Ningombam, D. D. (2023). Performance analysis and comparison of various machine learning algorithms for early stroke prediction. ETRI Journal, 45(6), 1007–1021. https://doi.org/10.4218/ETRIJ.2022-0271
Paetsch, J., & Drechsel, B. (2021). Factors Influencing Pre-service Teachers’ Intention to Use Digital Learning Materials: A Study Conducted During the COVID-19 Pandemic in Germany. Frontiers in Psychology, 12, 733830. https://doi.org/10.3389/FPSYG.2021.733830/BIBTEX
Paetsch, J., Franz, S., & Wolter, I. (2023). Changes in early career teachers’ technology use for teaching: The roles of teacher self-efficacy, ICT literacy, and experience during COVID-19 school closure. Teaching and Teacher Education, 135, 104318. https://doi.org/10.1016/J.TATE.2023.104318
Palacios Duarte, P. D., & Saavedra García, M. L. (2018). Institutional R&D environment and its influence on employment and sales in Mexican manufacturing SMEs. Revista Finanzas y Politica Economica, 10(1), 111–133. https://doi.org/10.14718/REVFINANZPOLITECON.2018.10.1.4
Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/J.MATPR.2021.07.382
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830.
Peng, J., Wu, W., Lockhart, B., Bian, S., Yan, J. N., Xu, L., Chi, Z., Rzeszotarski, J., & Wang, J. (2021). DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling in Python. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2271–2280. https://doi.org/10.1145/3448016.3457330
Perienen, A. (2020). Frameworks for ICT Integration in Mathematics Education - A Teacher’s Perspective. Eurasia Journal of Mathematics, Science and Technology Education, 16(6), em1845. https://doi.org/10.29333/EJMSTE/7803
Pes, B. (2020). Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains. Neural Computing and Applications, 32(10), 5951–5973. https://doi.org/10.1007/S00521-019-04082-3/TABLES/5
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/FBINF.2022.927312
Rajendran, S., Chamundeswari, S., & Sinha, A. A. (2022). Predicting the academic performance of middle- and high-school students using machine learning algorithms. Social Sciences & Humanities Open, 6(1), 100357. https://doi.org/10.1016/J.SSAHO.2022.100357
Remeseiro, B., & Bolon-Canedo, V. (2019). A review of feature selection methods in medical applications. Computers in Biology and Medicine, 112, 103375. https://doi.org/10.1016/J.COMPBIOMED.2019.103375
Salman, H., Almohsen, E., Henari, T., Shatnawi, S., Buzaboon, A., Fardan, M., & Albinali, K. (2023). Using Machine Learning and SEM to Analyze Attitudes towards adopting Metaverse in Higher Education. 2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023. https://doi.org/10.1109/SMARTNETS58706.2023.10215936
Sambasivam, G., & Opiyo, G. D. (2021). A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egyptian Informatics Journal, 22(1), 27–34. https://doi.org/10.1016/J.EIJ.2020.02.007
Saputra, J., Lawrencya, C., Saini, J. M., & Suharjito, S. (2023). Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Visual Computing for Industry, Biomedicine, and Art, 6(1), 1–27. https://doi.org/10.1186/S42492-023-00143-6/TABLES/1
Segura, M., Mello, J., & Hernández, A. (2022). Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role? Mathematics 2022, Vol. 10, Page 3359, 10(18), 3359. https://doi.org/10.3390/MATH10183359
Selim, K. S., & Rezk, S. S. (2023). On predicting school dropouts in Egypt: A machine learning approach. Education and Information Technologies, 28(7), 9235–9266. https://doi.org/10.1007/S10639-022-11571-X/FIGURES/6
Seota, S. B. W., Klein, R., & van Zyl, T. (2021). Modeling E-Behaviour, Personality and Academic Performance with Machine Learning. Applied Sciences 2021, Vol. 11, Page 10546, 11(22), 10546. https://doi.org/10.3390/APP112210546
Shekar, B. H., & Dagnew, G. (2019). Grid search-based hyperparameter tuning and classification of microarray cancer data. 2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019. https://doi.org/10.1109/ICACCP.2019.8882943
Spooner, A., Mohammadi, G., Sachdev, P. S., Brodaty, H., & Sowmya, A. (2023). Ensemble feature selection with data-driven thresholding for Alzheimer’s disease biomarker discovery. BMC Bioinformatics, 24(1). https://doi.org/10.1186/S12859-022-05132-9
Srinivas, S., & Rajendran, S. (2017). A Data-Driven Approach for Multiobjective Loan Portfolio Optimization Using Machine-Learning Algorithms and Mathematical Programming. Big Data Analytics Using Multiple Criteria Decision-Making Models, 175–210. https://doi.org/10.1201/9781315152653-8
Sulaiman, M. A., & Labadin, J. (2015). Feature selection based on mutual information for machine learning prediction of petroleum reservoir properties. 2015 9th International Conference on IT in Asia: Transforming Big Data into Knowledge, CITA 2015 - Proceedings. https://doi.org/10.1109/CITA.2015.7349827
Suprapto, S. (2024). Comparative analysis of preprocessing methods for molecular descriptors in predicting anti-cathepsin activity. South African Journal of Chemical Engineering, 47, 123–135. https://doi.org/10.1016/J.SAJCE.2023.11.001
Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/J.TECHSOC.2021.101565
Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data Classification: Algorithms and Applications, 37–64. https://doi.org/10.1201/B17320
Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/J.ACI.2018.08.003/FULL/PDF
The pandas development team. (2023). pandas-dev/pandas: Pandas.
Torres-Vásquez, M., Hernández-Torruco, J., Hernández-Ocaña, B., & Chávez-Bosquez, O. (2021). Impact of oversampling algorithms in the classification of Guillain-Barré syndrome main subtypes. Ingenius, 2021(25), 20–31. https://doi.org/10.17163/INGS.N25.2021.02
Trujillano, J., Sarria-Santamera, A., Aureli Esquerda, /, Badia, M., Palma, M., & March, J. (2008). Aproximación a la metodología basada en árboles de decisión (CART): Mortalidad hospitalaria del infarto agudo de miocardio. Gaceta Sanitaria, 22(1), 65–72. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0213-91112008000100013&lng=es&nrm=iso&tlng=es
Tsai, C. F., & Sung, Y. T. (2020). Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowledge-Based Systems, 203, 106097. https://doi.org/10.1016/J.KNOSYS.2020.106097
Turgut, Y. E., & Aslan, A. (2021). Factors affecting ICT integration in TURKISH education: a systematic review. Education and Information Technologies, 26(4), 4069–4092. https://doi.org/10.1007/S10639-021-10441-2/METRICS
Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Martínez, A., & Jenkins, M. (2020). Evaluating hyper-parameter tuning using random search in support vector machines for software effort estimation. PROMISE 2020 - Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics in Software Engineering, Co-Located with ESEC/FSE 2020, 31–40. https://doi.org/10.1145/3416508.3417121
Wabang, K., Nurhayati, O. D., & Farikhin. (2022). Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 872–876. https://doi.org/10.29207/RESTI.V6I5.4498
Wah, Y. B., Ibrahim, N., Hamid, H. A., Abdul-Rahman, S., & Fong, S. (2018). Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. Volume 26, Issue 1, Pages 329 - 340, 26(1), 329–340.
Wang, J., Xu, J., Zhao, C., Peng, Y., & Wang, H. (2019). An ensemble feature selection method for high-dimensional data based on sort aggregation. Systems Science & Control Engineering, 7(2), 32–39. https://doi.org/10.1080/21642583.2019.1620658
Weerts, H. J. P., Mueller, A. C., & Vanschoren, J. (2020). Importance of Tuning Hyperparameters of Machine Learning Algorithms. https://arxiv.org/abs/2007.07588v1
Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/J.NEUCOM.2020.07.061
Yoo, J. E., & Rho, M. (2020). Exploration of Predictors for Korean Teacher Job Satisfaction via a Machine Learning Technique, Group Mnet. Frontiers in Psychology, 11, 441. https://doi.org/10.3389/fpsyg.2020.00441
Zhang, H., Zhang, H., Pirbhulal, S., Wu, W., & Albuquerque, V. H. C. D. (2020). Active Balancing Mechanism for Imbalanced Medical Data in Deep Learning–Based Classification Models. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(1s). https://doi.org/10.1145/3357253
Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180
Agasisti, T., Antequera, G., & Delprato, M. (2023). Technological resources, ICT use and schools efficiency in Latin America – Insights from OECD PISA 2018. International Journal of Educational Development, 99, 102757. https://doi.org/10.1016/J.IJEDUDEV.2023.102757
AGETIC. (2019). Encuesta Final-Profesores de Inclusión Digital - Conjuntos de datos - Datos Abiertos Bolivia.
Al-Mamary, Y. H. S. (2022). Examining the factors affecting the use of ICT in teaching in Yemeni schools. Journal of Public Affairs, 22(1), e2330. https://doi.org/10.1002/PA.2330
Albulayhi, K., Al-Haija, Q. A., Alsuhibany, S. A., Jillepalli, A. A., Ashrafuzzaman, M., & Sheldon, F. T. (2022). IoT Intrusion Detection Using Machine Learning with a Novel High Performing Feature Selection Method. Applied Sciences 2022, Vol. 12, Page 5015, 12(10), 5015. https://doi.org/10.3390/APP12105015
Alghamdi, A. S., & Rahman, A. (2023). Data Mining Approach to Predict Success of Secondary School Students: A Saudi Arabian Case Study. Education Sciences 2023, Vol. 13, Page 293, 13(3), 293. https://doi.org/10.3390/EDUCSCI13030293
Alhamad, A. Q. M., Akour, I., Alshurideh, M., Al-Hamad, A. Q., Kurdi, B. Al, & Alzoubi, H. (2021). Predicting the intention to use google glass: A comparative approach using machine learning models and PLS-SEM. Volume 5, Issue 3, Pages 311 - 320, 5(3), 311–320. https://doi.org/10.5267/j.ijdns.2021.6.002
Alsahaf, A., Petkov, N., Shenoy, V., & Azzopardi, G. (2022). A framework for feature selection through boosting. Expert Systems with Applications, 187, 115895. https://doi.org/10.1016/J.ESWA.2021.115895
Baena-Morales, S., Martinez-Roig, R., & Hernádez-Amorós, M. J. (2020). Sustainability and Educational Technology—A Description of the Teaching Self-Concept. Sustainability, 12(24), 10309. https://doi.org/10.3390/SU122410309
Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33–44. https://doi.org/10.1016/J.CHEMOLAB.2017.12.004
Bansal, M. (2023). Use of information and communication technology (ICT) in education system. International Journal of Multidisciplinary Trends, 5(3), 04–06. https://www.multisubjectjournal.com/archives/2023.v5.i3.A.263
Barraza, N., Moro, S., Ferreyra, M., & de la Peña, A. (2019). Mutual information and sensitivity analysis for feature selection in customer targeting: A comparative study. Journal of Information Science, 45(1), 53–67. https://doi.org/10.1177/0165551518770967/ASSET/IMAGES/LARGE/10.1177_0165551518770967-FIG4.JPEG
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735
Bergstra, J., Ca, J. B., & Ca, Y. B. (2012). Random Search for Hyper-Parameter Optimization Yoshua Bengio. Journal of Machine Learning Research, 13, 281–305. http://scikit-learn.sourceforge.net.
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484. https://doi.org/10.1002/WIDM.1484
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M., & Herrera, F. (2014). A review of microarray datasets and applied feature selection methods. Information Sciences, 282, 111–135. https://doi.org/10.1016/J.INS.2014.05.042
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839. https://doi.org/10.1016/J.CSDA.2019.106839
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Classification and Regression Trees, 1–358. https://doi.org/10.1201/9781315139470/CLASSIFICATION-REGRESSION-TREES-LEO-BREIMAN
Brownlee, J., Sanderson, M., Koshy, A., Cheremskoy, A., & Halfyard, J. (2020). Machine Learning Mastery With Python: Data Cleaning, Feature Selection, and Data Transforms in Python.
Cabellos, B., Siddiq, F., & Scherer, R. (2024). The moderating role of school facilitating conditions and attitudes towards ICT on teachers’ ICT use and emphasis on developing students’ digital skills. Computers in Human Behavior, 150, 107994. https://doi.org/10.1016/J.CHB.2023.107994
Campos Cruz, H., Ramírez Sánchez, M. Y., Campos Cruz, H., & Ramírez Sánchez, M. Y. (2018). Las TIC en los procesos educativos de un centro público de investigación. Apertura (Guadalajara, Jal.), 10(1), 56–70. https://doi.org/10.32870/AP.V10N1.1160
Cang, S., & Yu, H. (2012). Mutual information based input feature selection for classification problems. Decision Support Systems, 54(1), 691–698. https://doi.org/10.1016/J.DSS.2012.08.014
Celbiş, M. G., Wong, P. H., Kourtit, K., & Nijkamp, P. (2023). Job Satisfaction and the ‘Great Resignation’: An Exploratory Machine Learning Analysis. Social Indicators Research, 170(3), 1097–1118. https://doi.org/10.1007/S11205-023-03233-3/FIGURES/6
Cerda, J. L., & Villarroel Del, L. P. (n.d.). Evaluación de la concordancia inter-observador en investigación pediátrica: Coeficiente de Kappa.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/J.COMPELECENG.2013.11.024
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672
Chen, X., & Jeong, J. C. (2007). Enhanced recursive feature elimination. Sixth International Conference on Machine Learning and Applications (ICMLA 2007), 429–435. https://doi.org/10.1109/ICMLA.2007.35
Choong, A. C. H., & Lee, N. K. (2017). Evaluation of convolutionary neural networks modeling of DNA sequences using ordinal versus one-hot encoding method. 1st International Conference on Computer and Drone Applications: Ethical Integration of Computer and Drone Technology for Humanity Sustainability, IConDA 2017, 2018-Janua, 60–65. https://doi.org/10.1109/ICONDA.2017.8270400
Contreras, L. E., Fuentes, H. J., Rodríguez, J. I., Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233
Cruz Huacac, R. D. (2019). Uso de Máquina de Soporte Vectorial para Predicción de Resistencia a la Compresión de Concreto [Universidad Nacional de San Agustín de Arequipa]. http://repositorio.unsa.edu.pe/handle/UNSA/9092
CTIC. (2023). CTIC – Consejo de Tecnologías e Información del Estado Plurinacional de Bolivia.
Datos Abiertos. (2019). Bienvenida - Datos Abiertos Bolivia.
Dhal, P., & Azad, C. (2021). A comprehensive survey on feature selection in the various fields of machine learning. Applied Intelligence, 52(4), 4543–4581. https://doi.org/10.1007/S10489-021-02550-9
Dieste, B., Coma, T., & Blasco-Serrano, A. C. (2019). Inclusión de los Objetivos de Desarrollo Sostenible en el Currículum de Educación Primaria y Secundaria en Escuelas Rurales de Zaragoza. Revista Internacional de Educación Para La Justicia Social, 8(1), 97–115. https://doi.org/10.15366/RIEJS2019.8.1.006
Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021). Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics, 8(4), 79. https://doi.org/10.3390/INFORMATICS8040079
Fallucchi, F., Coladangelo, M., Giuliano, R., & De Luca, E. W. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 1–17. https://doi.org/10.3390/computers9040086
Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine on JSTOR. The Annals of Statistics, 29(5), 1189–1232. https://www.jstor.org/stable/2699986
Frye, M., Mohren, J., & Schmitt, R. H. (2021). Benchmarking of Data Preprocessing Methods for Machine Learning-Applications in Production. Procedia CIRP, 104, 50–55. https://doi.org/10.1016/J.PROCIR.2021.11.009
Giselle Fernández-Godino, P. M. (2016). Review of multi-fidelity models. https://arxiv.org/abs/1609.07196v4
González-Zamar, M. D., Abad-Segura, E., López-Meneses, E., & Gómez-Galán, J. (2020). Managing ICT for Sustainable Education: Research Analysis in the Context of Higher Education. Sustainability, 12(19), 8254. https://doi.org/10.3390/SU12198254
Graham, M. A., Stols, G., & Kapp, R. (2020). Teacher Practice and Integration of ICT: Why Are or Aren’t South African Teachers Using ICTs in Their Classrooms. International Journal of Instruction, 13(2), 749–766. https://doi.org/10.29333/iji.2020.13251a
Guney, H., & Oztoprak, H. (2022). A robust ensemble feature selection technique for high-dimensional datasets based on minimum weight threshold method. Computational Intelligence, 38(5), 1616–1658. https://doi.org/10.1111/COIN.12524
Habibi, A., Razak, R. A., Yusop, F. D., Mukminin, A., & Yaqin, L. N. (2020). Factors Affecting ICT Integration During Teaching Practices: A Multiple Case Study of Three Indonesian Universities. The Qualitative Report, 25(5), 1127–1144. https://doi.org/10.46743/2160-3715/2020.4150
Hasanin, T., Khoshgoftaar, T. M., Leevy, J. L., & Bauder, R. A. (2019). Severely imbalanced Big Data challenges: investigating data sampling approaches. Journal of Big Data, 6(1), 1–25. https://doi.org/10.1186/S40537-019-0274-4/FIGURES/3
He, H., & Ma, Y. (2013). Imbalanced learning: Foundations, algorithms, and applications. In Imbalanced Learning: Foundations, Algorithms, and Applications. wiley. https://doi.org/10.1002/9781118646106
Holicza, B., & Kiss, A. (2023). Predicting and Comparing Students’ Online and Offline Academic Performance Using Machine Learning Algorithms. Behavioral Sciences, 13(4), 289. https://doi.org/10.3390/BS13040289
Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/J.INFSOF.2015.07.004
Hussain, S., & Khan, M. Q. (2023). Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning. Annals of Data Science, 10(3), 637–655. https://doi.org/10.1007/S40745-021-00341-0/FIGURES/4
Ifinedo, E., Rikala, J., & Hämäläinen, T. (2020). Factors affecting Nigerian teacher educators’ technology integration: Considering characteristics, knowledge constructs, ICT practices and beliefs. Computers & Education, 146, 103760. https://doi.org/10.1016/J.COMPEDU.2019.103760
Irshad, M., Qureshi, M. A., Saraih, U. N., & Ahmad, S. F. (2023). Impact of institutional climate on the student’s engagement and learning outcomes in private sector universities of Karachi. International Journal of Management in Education, 17(3), 297–322. https://doi.org/10.1504/IJMIE.2023.130674
Jain, P. K., Jain, M., & Pamula, R. (2020). Explaining and predicting employees’ attrition: a machine learning approach. SN Applied Sciences, 2(4), 1–11. https://doi.org/10.1007/S42452-020-2519-4/TABLES/5
Jin, Y., Xu, S., Shao, Z., Luo, X., Wang, Y., Yu, Y., & Wang, Y. (2024). Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis. Journal of Affective Disorders, 345, 300–310. https://doi.org/10.1016/J.JAD.2023.10.101
Kaps, A., Lehrer, T., Lepenies, I., Wagner, M., & Duddeck, F. (2023). Multi-fidelity optimization of metal sheets concerning manufacturability in deep-drawing processes. Structural and Multidisciplinary Optimization, 66(8), 1–16. https://doi.org/10.1007/S00158-023-03631-8/FIGURES/13
Kler, S. (2014). ICT Integration in Teaching and Learning: Empowerment of Education with Technology. Issues and Ideas in Education, 2(2), 255–271. https://doi.org/10.15415/IIE.2014.22019
Lawrence, J. E., & Tar, U. A. (2018). Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International, 55(1), 79–105. https://doi.org/10.1080/09523987.2018.1439712
Lee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction. Applied Sciences 2019, Vol. 9, Page 3093, 9(15), 3093. https://doi.org/10.3390/APP9153093
Lee, Y. C., Malcein, L. A., & Kim, S. C. (2021). Information and communications technology (ICT) usage during COVID-19: Motivating factors and implications. International Journal of Environmental Research and Public Health, 18(7). https://doi.org/10.3390/IJERPH18073571/S1
Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 1–30. https://doi.org/10.1186/S40537-018-0151-6/TABLES/5
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2016). Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6). https://doi.org/10.1145/3136625
Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. 1. https://arxiv.org/abs/1912.06059v1
Lovera, F. A., & Cardinale, Y. (2023). Análisis de sentimientos en Twitter: Un estudio comparativo. Revista Científica de Sistemas e Informática, 3(1), e418–e418. https://doi.org/10.51252/RCSI.V3I1.418
Madni, S. H. H., Ali, J., Husnain, H. A., Masum, M. H., Mustafa, S., Shuja, J., Maray, M., & Hosseini, S. (2022). Factors Influencing the Adoption of IoT for E-Learning in Higher Educational Institutes in Developing Countries. Frontiers in Psychology, 13, 915596. https://doi.org/10.3389/FPSYG.2022.915596/BIBTEX
Mahmudah, K. R., Purnama, B., Indriani, F., & Satou, K. (2021). Machine learning algorithms for predicting chronic obstructive pulmonary disease from gene expression data with class imbalance. BIOINFORMATICS 2021 - 12th International Conference on Bioinformatics Models, Methods and Algorithms; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, 148–153. https://doi.org/10.5220/0010316501480153
Mandal, M., Singh, P. K., Ijaz, M. F., Shafi, J., & Sarkar, R. (2021). A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification. Sensors, 21(16), 5571. https://doi.org/10.3390/S21165571
Márquez, S., Jesús, J., Linares, G., Del Carmen Pérez-Fuentes, M., & Makrakis, V. (2023). Using the DREAM Methodology for Course Assessment in the Field of ICT-Enabled Education for Sustainability. European Journal of Investigation in Health, Psychology and Education, 13(7), 1378–1391. https://doi.org/10.3390/EJIHPE13070100
Miao, J., & Niu, L. (2016). A Survey on Feature Selection. Procedia Computer Science, 91, 919–926. https://doi.org/10.1016/J.PROCS.2016.07.111
Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 2020 11th International Conference on Information and Communication Systems, ICICS 2020, 243–248. https://doi.org/10.1109/ICICS49469.2020.239556
Mukasheva, M., Mukhiyadin, A., Makhazhanova, U., & Serikbayeva, S. (2023). The Behaviour of the Ensemble Learning Model in Analysing Educational Data on COVID-19. 13(12), 1868–1878. https://doi.org/10.18178/ijiet.2023.13.12.2000
Olabanjo, O. A., Wusu, A. S., & Manuel, M. (2022). A machine learning prediction of academic performance of secondary school students using radial basis function neural network. Trends in Neuroscience and Education, 29, 100190. https://doi.org/10.1016/J.TINE.2022.100190
Padimi, V., Telu, V. S., & Ningombam, D. D. (2023). Performance analysis and comparison of various machine learning algorithms for early stroke prediction. ETRI Journal, 45(6), 1007–1021. https://doi.org/10.4218/ETRIJ.2022-0271
Paetsch, J., & Drechsel, B. (2021). Factors Influencing Pre-service Teachers’ Intention to Use Digital Learning Materials: A Study Conducted During the COVID-19 Pandemic in Germany. Frontiers in Psychology, 12, 733830. https://doi.org/10.3389/FPSYG.2021.733830/BIBTEX
Paetsch, J., Franz, S., & Wolter, I. (2023). Changes in early career teachers’ technology use for teaching: The roles of teacher self-efficacy, ICT literacy, and experience during COVID-19 school closure. Teaching and Teacher Education, 135, 104318. https://doi.org/10.1016/J.TATE.2023.104318
Palacios Duarte, P. D., & Saavedra García, M. L. (2018). Institutional R&D environment and its influence on employment and sales in Mexican manufacturing SMEs. Revista Finanzas y Politica Economica, 10(1), 111–133. https://doi.org/10.14718/REVFINANZPOLITECON.2018.10.1.4
Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80, 3782–3785. https://doi.org/10.1016/J.MATPR.2021.07.382
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning Research, 12, 2825–2830.
Peng, J., Wu, W., Lockhart, B., Bian, S., Yan, J. N., Xu, L., Chi, Z., Rzeszotarski, J., & Wang, J. (2021). DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling in Python. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2271–2280. https://doi.org/10.1145/3448016.3457330
Perienen, A. (2020). Frameworks for ICT Integration in Mathematics Education - A Teacher’s Perspective. Eurasia Journal of Mathematics, Science and Technology Education, 16(6), em1845. https://doi.org/10.29333/EJMSTE/7803
Pes, B. (2020). Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains. Neural Computing and Applications, 32(10), 5951–5973. https://doi.org/10.1007/S00521-019-04082-3/TABLES/5
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics, 2, 927312. https://doi.org/10.3389/FBINF.2022.927312
Rajendran, S., Chamundeswari, S., & Sinha, A. A. (2022). Predicting the academic performance of middle- and high-school students using machine learning algorithms. Social Sciences & Humanities Open, 6(1), 100357. https://doi.org/10.1016/J.SSAHO.2022.100357
Remeseiro, B., & Bolon-Canedo, V. (2019). A review of feature selection methods in medical applications. Computers in Biology and Medicine, 112, 103375. https://doi.org/10.1016/J.COMPBIOMED.2019.103375
Salman, H., Almohsen, E., Henari, T., Shatnawi, S., Buzaboon, A., Fardan, M., & Albinali, K. (2023). Using Machine Learning and SEM to Analyze Attitudes towards adopting Metaverse in Higher Education. 2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023. https://doi.org/10.1109/SMARTNETS58706.2023.10215936
Sambasivam, G., & Opiyo, G. D. (2021). A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egyptian Informatics Journal, 22(1), 27–34. https://doi.org/10.1016/J.EIJ.2020.02.007
Saputra, J., Lawrencya, C., Saini, J. M., & Suharjito, S. (2023). Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Visual Computing for Industry, Biomedicine, and Art, 6(1), 1–27. https://doi.org/10.1186/S42492-023-00143-6/TABLES/1
Segura, M., Mello, J., & Hernández, A. (2022). Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role? Mathematics 2022, Vol. 10, Page 3359, 10(18), 3359. https://doi.org/10.3390/MATH10183359
Selim, K. S., & Rezk, S. S. (2023). On predicting school dropouts in Egypt: A machine learning approach. Education and Information Technologies, 28(7), 9235–9266. https://doi.org/10.1007/S10639-022-11571-X/FIGURES/6
Seota, S. B. W., Klein, R., & van Zyl, T. (2021). Modeling E-Behaviour, Personality and Academic Performance with Machine Learning. Applied Sciences 2021, Vol. 11, Page 10546, 11(22), 10546. https://doi.org/10.3390/APP112210546
Shekar, B. H., & Dagnew, G. (2019). Grid search-based hyperparameter tuning and classification of microarray cancer data. 2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019. https://doi.org/10.1109/ICACCP.2019.8882943
Spooner, A., Mohammadi, G., Sachdev, P. S., Brodaty, H., & Sowmya, A. (2023). Ensemble feature selection with data-driven thresholding for Alzheimer’s disease biomarker discovery. BMC Bioinformatics, 24(1). https://doi.org/10.1186/S12859-022-05132-9
Srinivas, S., & Rajendran, S. (2017). A Data-Driven Approach for Multiobjective Loan Portfolio Optimization Using Machine-Learning Algorithms and Mathematical Programming. Big Data Analytics Using Multiple Criteria Decision-Making Models, 175–210. https://doi.org/10.1201/9781315152653-8
Sulaiman, M. A., & Labadin, J. (2015). Feature selection based on mutual information for machine learning prediction of petroleum reservoir properties. 2015 9th International Conference on IT in Asia: Transforming Big Data into Knowledge, CITA 2015 - Proceedings. https://doi.org/10.1109/CITA.2015.7349827
Suprapto, S. (2024). Comparative analysis of preprocessing methods for molecular descriptors in predicting anti-cathepsin activity. South African Journal of Chemical Engineering, 47, 123–135. https://doi.org/10.1016/J.SAJCE.2023.11.001
Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/J.TECHSOC.2021.101565
Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data Classification: Algorithms and Applications, 37–64. https://doi.org/10.1201/B17320
Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/J.ACI.2018.08.003/FULL/PDF
The pandas development team. (2023). pandas-dev/pandas: Pandas.
Torres-Vásquez, M., Hernández-Torruco, J., Hernández-Ocaña, B., & Chávez-Bosquez, O. (2021). Impact of oversampling algorithms in the classification of Guillain-Barré syndrome main subtypes. Ingenius, 2021(25), 20–31. https://doi.org/10.17163/INGS.N25.2021.02
Trujillano, J., Sarria-Santamera, A., Aureli Esquerda, /, Badia, M., Palma, M., & March, J. (2008). Aproximación a la metodología basada en árboles de decisión (CART): Mortalidad hospitalaria del infarto agudo de miocardio. Gaceta Sanitaria, 22(1), 65–72. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0213-91112008000100013&lng=es&nrm=iso&tlng=es
Tsai, C. F., & Sung, Y. T. (2020). Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowledge-Based Systems, 203, 106097. https://doi.org/10.1016/J.KNOSYS.2020.106097
Turgut, Y. E., & Aslan, A. (2021). Factors affecting ICT integration in TURKISH education: a systematic review. Education and Information Technologies, 26(4), 4069–4092. https://doi.org/10.1007/S10639-021-10441-2/METRICS
Villalobos-Arias, L., Quesada-López, C., Guevara-Coto, J., Martínez, A., & Jenkins, M. (2020). Evaluating hyper-parameter tuning using random search in support vector machines for software effort estimation. PROMISE 2020 - Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics in Software Engineering, Co-Located with ESEC/FSE 2020, 31–40. https://doi.org/10.1145/3416508.3417121
Wabang, K., Nurhayati, O. D., & Farikhin. (2022). Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(5), 872–876. https://doi.org/10.29207/RESTI.V6I5.4498
Wah, Y. B., Ibrahim, N., Hamid, H. A., Abdul-Rahman, S., & Fong, S. (2018). Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. Volume 26, Issue 1, Pages 329 - 340, 26(1), 329–340.
Wang, J., Xu, J., Zhao, C., Peng, Y., & Wang, H. (2019). An ensemble feature selection method for high-dimensional data based on sort aggregation. Systems Science & Control Engineering, 7(2), 32–39. https://doi.org/10.1080/21642583.2019.1620658
Weerts, H. J. P., Mueller, A. C., & Vanschoren, J. (2020). Importance of Tuning Hyperparameters of Machine Learning Algorithms. https://arxiv.org/abs/2007.07588v1
Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/J.NEUCOM.2020.07.061
Yoo, J. E., & Rho, M. (2020). Exploration of Predictors for Korean Teacher Job Satisfaction via a Machine Learning Technique, Group Mnet. Frontiers in Psychology, 11, 441. https://doi.org/10.3389/fpsyg.2020.00441
Zhang, H., Zhang, H., Pirbhulal, S., Wu, W., & Albuquerque, V. H. C. D. (2020). Active Balancing Mechanism for Imbalanced Medical Data in Deep Learning–Based Classification Models. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(1s). https://doi.org/10.1145/3357253
Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180