How to cite this paper
Alsharaiah, M., Abu-Shareha, A., Abualhaj, M., Baniata, L., Adwan, O., Al-saaidah, A & Oraiqat, M. (2023). A new phishing-website detection framework using ensemble classification and clustering.International Journal of Data and Network Science, 7(2), 857-864.
Refrences
APWG, T. A.-P. W. G. (2022). Phishing Activity Trends Reports. Retrieved from https://apwg.org/trendsreports/
Aggarwal, A., Rajadesingan, A., & Kumaraguru, P. (2012). PhishAri: Automatic realtime phishing detection on twitter. Paper presented at the 2012 eCrime Researchers Summit.
Akpan, U. I., & Starkey, A. (2021). Review of classification algorithms with changing inter-class distances. Machine Learning with Applications, 4, 100031.
Aljofey, A., Jiang, Q., Rasool, A., Chen, H., Liu, W., Qu, Q., & Wang, Y. (2022). An effective detection approach for phishing websites using URL and HTML features. Scientific Reports, 12(1), 1-19.
Alsariera, Y. A., Elijah, A. V., & Balogun, A. O. (2020). Phishing website detection: forest by penalizing attributes algorithm and its enhanced variations. Arabian Journal for Science and Engineering, 45(12), 10459-10470.
Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences, 484, 153-166.
Freund, Y., & Schapire, R. E. (1997). A desicion-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
Ganesan, S. (2022). Detection of Phishing Websites Using Classification Algorithms. In Cyber Security and Digital Forensics (pp. 129-141): Springer.
Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and Its Interface, 2(3), 349-360.
He, Z., Sheng, C., Liu, Y., & Zou, Q. (2021). Instance-based classification through hypothesis testing. IEEE Access, 9, 17485-17494.
HO, T. K. (1995). Random Decision Forests. Paper presented at the Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada
Intelligence, M. S. (2022). Microsoft Digital Defense Report Retrieved from https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
Krishnan, D., & Subramaniyaswamy, V. (2015). Phishing website detection system based on enhanced itree classifier. ARPN Journal of Engineering Application Science, 10(14), 5688-5699.
Li, L., & Helenius, M. (2007). Usability evaluation of anti-phishing toolbars. Journal in Computer Virology, 3(2), 163-184.
Li, Y., Yang, Z., Chen, X., Yuan, H., & Liu, W. (2019). A stacking model using URL and HTML features for phishing webpage detection. Future Generation Computer Systems, 94, 27-39.
Rendall, K., Nisioti, A., & Mylonas, A. (2020). Towards a multi-layered phishing detection. Sensors, 20(16), 4540.
Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, 345-357.
Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. In Emerging technology in modelling and graphics (pp. 99-111): Springer.
Subasi, A., & Kremic, E. (2020). Comparison of adaboost with multiboosting for phishing website detection. Procedia Computer Science, 168, 272-278.
Subasi, A., Molah, E., Almkallawi, F., & Chaudhery, T. J. (2017). Intelligent phishing website detection using random forest classifier. Paper presented at the 2017 International conference on electrical and computing technologies and applications (ICECTA).
Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.
Zabihimayvan, M., & Doran, D. (2019). Fuzzy rough set feature selection to enhance phishing attack detection. Paper presented at the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Ziegel, E. R. (2003). The elements of statistical learning. In: Taylor & Francis.
Aggarwal, A., Rajadesingan, A., & Kumaraguru, P. (2012). PhishAri: Automatic realtime phishing detection on twitter. Paper presented at the 2012 eCrime Researchers Summit.
Akpan, U. I., & Starkey, A. (2021). Review of classification algorithms with changing inter-class distances. Machine Learning with Applications, 4, 100031.
Aljofey, A., Jiang, Q., Rasool, A., Chen, H., Liu, W., Qu, Q., & Wang, Y. (2022). An effective detection approach for phishing websites using URL and HTML features. Scientific Reports, 12(1), 1-19.
Alsariera, Y. A., Elijah, A. V., & Balogun, A. O. (2020). Phishing website detection: forest by penalizing attributes algorithm and its enhanced variations. Arabian Journal for Science and Engineering, 45(12), 10459-10470.
Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection framework for machine learning-based phishing detection system. Information Sciences, 484, 153-166.
Freund, Y., & Schapire, R. E. (1997). A desicion-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
Ganesan, S. (2022). Detection of Phishing Websites Using Classification Algorithms. In Cyber Security and Digital Forensics (pp. 129-141): Springer.
Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and Its Interface, 2(3), 349-360.
He, Z., Sheng, C., Liu, Y., & Zou, Q. (2021). Instance-based classification through hypothesis testing. IEEE Access, 9, 17485-17494.
HO, T. K. (1995). Random Decision Forests. Paper presented at the Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada
Intelligence, M. S. (2022). Microsoft Digital Defense Report Retrieved from https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
Krishnan, D., & Subramaniyaswamy, V. (2015). Phishing website detection system based on enhanced itree classifier. ARPN Journal of Engineering Application Science, 10(14), 5688-5699.
Li, L., & Helenius, M. (2007). Usability evaluation of anti-phishing toolbars. Journal in Computer Virology, 3(2), 163-184.
Li, Y., Yang, Z., Chen, X., Yuan, H., & Liu, W. (2019). A stacking model using URL and HTML features for phishing webpage detection. Future Generation Computer Systems, 94, 27-39.
Rendall, K., Nisioti, A., & Mylonas, A. (2020). Towards a multi-layered phishing detection. Sensors, 20(16), 4540.
Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, 345-357.
Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. In Emerging technology in modelling and graphics (pp. 99-111): Springer.
Subasi, A., & Kremic, E. (2020). Comparison of adaboost with multiboosting for phishing website detection. Procedia Computer Science, 168, 272-278.
Subasi, A., Molah, E., Almkallawi, F., & Chaudhery, T. J. (2017). Intelligent phishing website detection using random forest classifier. Paper presented at the 2017 International conference on electrical and computing technologies and applications (ICECTA).
Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.
Zabihimayvan, M., & Doran, D. (2019). Fuzzy rough set feature selection to enhance phishing attack detection. Paper presented at the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Ziegel, E. R. (2003). The elements of statistical learning. In: Taylor & Francis.