How to cite this paper
Firda, A., Saggaff, A., Hanafiah, H & Saloma, S. (2023). Experimental study of artificial lightweight aggregates using coal fly ash and epoxy resin.Engineering Solid Mechanics, 11(4), 369-278.
Refrences
Adhitya, B. B., Saggaff, A., Saloma, S., & Hanafiah, H. (2023). Manufacture of Geopolymer Artificial Aggregates by Pelletization and Crushing Processes. Civil Engineering and Architecture, 11(1), 13-21.
Arriagada, C., Navarrete, I., & Lopez, M. (2019). Understanding the effect of porosity on the mechanical and thermal performance of glass foam lightweight aggregates and the influence of production factors. Construction and Building Materials, 228, 116746.
Balapour, M., Rao, R., Garboczi, E. J., Spatari, S., Hsuan, Y. G., Billen, P., & Farnam, Y. (2021). Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash. Journal of the American Ceramic Society, 104(1), 613-634.
Balapour, M., Khaneghahi, M. H., Garboczi, E. J., Hsuan, Y. G., Hun, D. E., & Farnam, Y. (2022). Off-spec fly ash-based lightweight aggregate properties and their influence on the fresh, mechanical, and hydration properties of lightweight concrete: A comparative study. Construction and Building Materials, 342, 128013.
Ferdous, W., Manalo, A., Wong, H. S., Abousnina, R., AlAjarmeh, O. S., Zhuge, Y., & Schubel, P. (2020). Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Construction and Building Materials, 232, 117229.
Firda, A., Permatasari, R., & Fuad, I. S. (2021). Pemanfaatan Limbah Batubara (Fly Ash) Sebagai Material Pengganti Agregat Kasar Pada Pembuatan Beton Ringan. Jurnal Deformasi, 6(1), 1-8.
Firda A., Sagaff A., Hanafiah, Saloma. (2023). Characteristic of Polymeric Lightweight Aggregate with Coal Fly Ash and Epoxy Resin for Manufacturing the Lightweight Concrete. Civil Engineering and Architecture, 11(1), 13.
Franus, M., Barnat-Hunek, D., & Wdowin, M. (2016). Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental monitoring and assessment, 188, 1-13.
Fu, C., Ye, H., Zhu, K., Fang, D., & Zhou, J. (2020). Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cement and Concrete Composites, 114, 103721.
Gagandeep, S. P. (2021). Experimental study on strength characteristics of polymer concrete with epoxy resin. Materials Today: Proceedings, 37(2).
Gerasimova, E. (2016). The effect of Fe2O3 on the mechanical properties of the polymer modified cement containing fly ash. Procedia Engineering, 150, 1553-1557.
Karyawan, I. D. M. A., Ekaputri, J. J., Widyatmoko, I., & Ariatedja, E. (2019). The effects of Na2SiO3/NaOH ratios on the volumetric properties of fly ash geopolymer artificial aggregates. In Materials Science Forum, 967, 228-235.
Nor, A. M., Yahya, Z., Abdullah, M. M. A. B., Razak, R. A., Ekaputri, J. J., Faris, M. A., & Hamzah, H. N. (2016). A review on the manufacturing of lightweight aggregates using industrial by-product. In MATEC Web of Conferences (Vol. 78, p. 01067). EDP Sciences.
Punlert, S., Laoratanakul, P., Kongdee, R., & Suntako, R. (2017, September). Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances. In Journal of Physics: Conference Series (Vol. 901, No. 1, p. 012086). IOP Publishing.
Risdanareni, P., Schollbach, K., Wang, J., & De Belie, N. (2020). The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Construction and Building Materials, 259, 119832.
Saloma, Hanafiah, & Ilma Pratiwi, K. (2016). Effect NaOH Concentration on Bagasse Ash Based Geopolymerization. MATEC Web of ConferencesVolume 78, 7 October 2016, Article number 01025.
Septriansyah, V., Saggaff, A., & Saloma. (2021). Characteristics of nanocomposite polymer with temperature variation and heating time by using simple mixing method. International Journal of Advanced Technology and Engineering Exploration, 8(78), 651.
Shang, X., Chang, J., Yang, J., Ke, X., & Duan, Z. (2022). Life cycle sustainable assessment of natural vs artificial lightweight aggregates. Journal of Cleaner Production, 367, 133064.
Shi, M., Ling, T. C., Gan, B., & Guo, M. Z. (2019). Turning concrete waste powder into carbonated artificial aggregates. Construction and Building Materials, 199, 178-184.
Shivaprasad, K. N., & Das, B. B. (2017). Influence of alkali binder dosage on the efficiency of pelletization of aggregates from iron ore tailing and fly ash. International Journal of Engineering Research in Mechanical and Civil Engineering, 2(3), 388-392.
Sim, J., Kang, Y., Kim, B. J., Park, Y. H., & Lee, Y. C. (2020). Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers, 12(1), 79.
Vali, K. S., & Murugan, S. B. (2022). Performance of manufactured aggregate in the production of sustainable lightweight concrete. Materials Today: Proceedings, 60, 674-680.
Xu, L. Y., Qian, L. P., Huang, B. T., & Dai, J. G. (2021). Development of artificial one-part geopolymer lightweight aggregates by crushing technique. Journal of Cleaner Production, 315, 128200.
Yomthong, K., Wattanasiriwech, D., Aungkavattana, P., & Wattanasiriwech, S. (2021). Effect of NaOH Concentration and Curing Regimes on Compressive Strength of Fly Ash-Based Geopolymer. Materials Today: Proceedings, 43, 2647-2654.
Zhao, M., Zhao, M., Chen, M., Li, J., & Law, D. (2018). An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete. Construction and Building Materials, 183, 493-501.
Arriagada, C., Navarrete, I., & Lopez, M. (2019). Understanding the effect of porosity on the mechanical and thermal performance of glass foam lightweight aggregates and the influence of production factors. Construction and Building Materials, 228, 116746.
Balapour, M., Rao, R., Garboczi, E. J., Spatari, S., Hsuan, Y. G., Billen, P., & Farnam, Y. (2021). Thermochemical principles of the production of lightweight aggregates from waste coal bottom ash. Journal of the American Ceramic Society, 104(1), 613-634.
Balapour, M., Khaneghahi, M. H., Garboczi, E. J., Hsuan, Y. G., Hun, D. E., & Farnam, Y. (2022). Off-spec fly ash-based lightweight aggregate properties and their influence on the fresh, mechanical, and hydration properties of lightweight concrete: A comparative study. Construction and Building Materials, 342, 128013.
Ferdous, W., Manalo, A., Wong, H. S., Abousnina, R., AlAjarmeh, O. S., Zhuge, Y., & Schubel, P. (2020). Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Construction and Building Materials, 232, 117229.
Firda, A., Permatasari, R., & Fuad, I. S. (2021). Pemanfaatan Limbah Batubara (Fly Ash) Sebagai Material Pengganti Agregat Kasar Pada Pembuatan Beton Ringan. Jurnal Deformasi, 6(1), 1-8.
Firda A., Sagaff A., Hanafiah, Saloma. (2023). Characteristic of Polymeric Lightweight Aggregate with Coal Fly Ash and Epoxy Resin for Manufacturing the Lightweight Concrete. Civil Engineering and Architecture, 11(1), 13.
Franus, M., Barnat-Hunek, D., & Wdowin, M. (2016). Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental monitoring and assessment, 188, 1-13.
Fu, C., Ye, H., Zhu, K., Fang, D., & Zhou, J. (2020). Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cement and Concrete Composites, 114, 103721.
Gagandeep, S. P. (2021). Experimental study on strength characteristics of polymer concrete with epoxy resin. Materials Today: Proceedings, 37(2).
Gerasimova, E. (2016). The effect of Fe2O3 on the mechanical properties of the polymer modified cement containing fly ash. Procedia Engineering, 150, 1553-1557.
Karyawan, I. D. M. A., Ekaputri, J. J., Widyatmoko, I., & Ariatedja, E. (2019). The effects of Na2SiO3/NaOH ratios on the volumetric properties of fly ash geopolymer artificial aggregates. In Materials Science Forum, 967, 228-235.
Nor, A. M., Yahya, Z., Abdullah, M. M. A. B., Razak, R. A., Ekaputri, J. J., Faris, M. A., & Hamzah, H. N. (2016). A review on the manufacturing of lightweight aggregates using industrial by-product. In MATEC Web of Conferences (Vol. 78, p. 01067). EDP Sciences.
Punlert, S., Laoratanakul, P., Kongdee, R., & Suntako, R. (2017, September). Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances. In Journal of Physics: Conference Series (Vol. 901, No. 1, p. 012086). IOP Publishing.
Risdanareni, P., Schollbach, K., Wang, J., & De Belie, N. (2020). The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Construction and Building Materials, 259, 119832.
Saloma, Hanafiah, & Ilma Pratiwi, K. (2016). Effect NaOH Concentration on Bagasse Ash Based Geopolymerization. MATEC Web of ConferencesVolume 78, 7 October 2016, Article number 01025.
Septriansyah, V., Saggaff, A., & Saloma. (2021). Characteristics of nanocomposite polymer with temperature variation and heating time by using simple mixing method. International Journal of Advanced Technology and Engineering Exploration, 8(78), 651.
Shang, X., Chang, J., Yang, J., Ke, X., & Duan, Z. (2022). Life cycle sustainable assessment of natural vs artificial lightweight aggregates. Journal of Cleaner Production, 367, 133064.
Shi, M., Ling, T. C., Gan, B., & Guo, M. Z. (2019). Turning concrete waste powder into carbonated artificial aggregates. Construction and Building Materials, 199, 178-184.
Shivaprasad, K. N., & Das, B. B. (2017). Influence of alkali binder dosage on the efficiency of pelletization of aggregates from iron ore tailing and fly ash. International Journal of Engineering Research in Mechanical and Civil Engineering, 2(3), 388-392.
Sim, J., Kang, Y., Kim, B. J., Park, Y. H., & Lee, Y. C. (2020). Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers, 12(1), 79.
Vali, K. S., & Murugan, S. B. (2022). Performance of manufactured aggregate in the production of sustainable lightweight concrete. Materials Today: Proceedings, 60, 674-680.
Xu, L. Y., Qian, L. P., Huang, B. T., & Dai, J. G. (2021). Development of artificial one-part geopolymer lightweight aggregates by crushing technique. Journal of Cleaner Production, 315, 128200.
Yomthong, K., Wattanasiriwech, D., Aungkavattana, P., & Wattanasiriwech, S. (2021). Effect of NaOH Concentration and Curing Regimes on Compressive Strength of Fly Ash-Based Geopolymer. Materials Today: Proceedings, 43, 2647-2654.
Zhao, M., Zhao, M., Chen, M., Li, J., & Law, D. (2018). An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete. Construction and Building Materials, 183, 493-501.