How to cite this paper
Sugito, S., Alisjahbana, S & Riyanto, H. (2022). Concrete compressive strength of mix proportioning cockle shell, glass powder and epoxy resin under hot water curing condition through response surface methodology.Engineering Solid Mechanics, 10(3), 263-268.
Refrences
Akkuş, H., & Yaka, H. (2021). Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy. Measurement, 167, 108465.
Aslani, F., Ma, G., Wan, D. L. Y., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553-566.
Cebro, I. S., & Sitorus, A. (2019). Performance evaluation of a hand tractor to climbing sloping land. International Journal of Scientific and Technology Research, 8(7), 781-785.
Hameed, M. M., AlOmar, M. K., Baniya, W. J., & AlSaadi, M. A. (2021). Prediction of high-strength concrete: high-order response surface methodology modeling approach. Engineering with Computers. doi:10.1007/s00366-021-01284-z
Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425-436. doi:https://doi.org/10.1016/j.conbuildmat.2019.03.119
Hamouda, H. I., Nassar, H. N., Madian, H. R., Amr, S. S. A., & El-Gendy, N. S. (2015). Response surface optimization of bioethanol production from sugarcane molasses by Pichia veronae strain HSC-22. Biotechnology research international, 2015.
Huu, N., Phuoc, D., Huu, T., & Thu, H. (2019). Optimization of The FDM Parameters to Improve The Compressive Strength of The PLA-copper Based Products. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Joshi, S., Goyal, S., & Reddy, M. S. (2020). Influence of biogenic treatment in improving the durability properties of waste amended concrete: A review. Construction and Building Materials, 263, 120170.
Kareem, M., Bamigboye, G., Olawale, S., Tijani, M., Ishola, K., & Olawuyi, O. (2019). A Response Surface Approach for Determining Optimal Mix Parameters for Normal Strength Concrete. journal of Engineering and Environmental Sciences, 1(1).
Khankhaje, E., Salim, M. R., Mirza, J., Salmiati, Hussin, M. W., Khan, R., & Rafieizonooz, M. (2017). Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Applied Acoustics, 122, 113-120. doi:https://doi.org/10.1016/j.apacoust.2017.02.014
Meng, F., Li, Y., Yuan, S., Wang, W., Zheng, Y., & Osman, M. K. (2020). Multiobjective combination optimization of an impeller and diffuser in a reversible axial-flow pump based on a two-layer artificial neural network. Processes, 8(3), 309.
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recycling of seashell waste in concrete: A review. Construction and Building Materials, 162, 751-764.
Mohamad, N., Muthusamy, K., & Ismail, M. A. K. E. G. (2021). Cockle Shell as Mixing Ingredient in Concrete: A Review. CONSTRUCTION, 1(2), 9-20.
Moodi, Y., Mousavi, S. R., Ghavidel, A., Sohrabi, M. R., & Rashki, M. (2018). Using response surface methodology and providing a modified model using whale algorithm for estimating the compressive strength of columns confined with FRP sheets. Construction and Building Materials, 183, 163-170.
Poorarbabi, A., Ghasemi, M., & Moghaddam, M. A. (2020). Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939-949.
Ruslan, H. N., Muthusamy, K., Ariffin, N. F., Wahab, M. M. A., & Mohamad, N. (2022). Effect of crushed cockle shell as partial fine aggregate replacement on workability and strength of lightweight concrete. Materials Today: Proceedings, 48, 1826-1830.
Sitorus, A., Novrinaldi, & Bulan, R. (2020). Non-invasive moisture content measurement system based on the ESP8266 microcontroller. Bulletin of Electrical Engineering and Informatics, 9(3), 924-932. doi:10.11591/eei.v9i3.2178
Soundarya, N. (2021). A review on the physical & chemical properties of sea sand to be used a replacement to fine aggregate in concrete. Materials Today: Proceedings.
Yirgu, Z., Leta, S., Hussen, A., Khan, M. M., & Aragaw, T. (2021). Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon, 7(5), e07115. doi:https://doi.org/10.1016/j.heliyon.2021.e07115
Zam, H. P., Abidin, E. Z., Karuppiah, K., & Salit, M. S. (2019). Humidity Controlling Material Development from Diatomite, Waste Glass and Cockle Shell Powder: An Experimental Study. Malaysian Journal of Medicine and Health Sciences, 15(204).
Zhang, Q., Feng, X., Chen, X., & Lu, K. (2020). Mix design for recycled aggregate pervious concrete based on response surface methodology. Construction and Building Materials, 259, 119776. doi:https://doi.org/10.1016/j.conbuildmat.2020.119776
Aslani, F., Ma, G., Wan, D. L. Y., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553-566.
Cebro, I. S., & Sitorus, A. (2019). Performance evaluation of a hand tractor to climbing sloping land. International Journal of Scientific and Technology Research, 8(7), 781-785.
Hameed, M. M., AlOmar, M. K., Baniya, W. J., & AlSaadi, M. A. (2021). Prediction of high-strength concrete: high-order response surface methodology modeling approach. Engineering with Computers. doi:10.1007/s00366-021-01284-z
Hammoudi, A., Moussaceb, K., Belebchouche, C., & Dahmoune, F. (2019). Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials, 209, 425-436. doi:https://doi.org/10.1016/j.conbuildmat.2019.03.119
Hamouda, H. I., Nassar, H. N., Madian, H. R., Amr, S. S. A., & El-Gendy, N. S. (2015). Response surface optimization of bioethanol production from sugarcane molasses by Pichia veronae strain HSC-22. Biotechnology research international, 2015.
Huu, N., Phuoc, D., Huu, T., & Thu, H. (2019). Optimization of The FDM Parameters to Improve The Compressive Strength of The PLA-copper Based Products. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Joshi, S., Goyal, S., & Reddy, M. S. (2020). Influence of biogenic treatment in improving the durability properties of waste amended concrete: A review. Construction and Building Materials, 263, 120170.
Kareem, M., Bamigboye, G., Olawale, S., Tijani, M., Ishola, K., & Olawuyi, O. (2019). A Response Surface Approach for Determining Optimal Mix Parameters for Normal Strength Concrete. journal of Engineering and Environmental Sciences, 1(1).
Khankhaje, E., Salim, M. R., Mirza, J., Salmiati, Hussin, M. W., Khan, R., & Rafieizonooz, M. (2017). Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Applied Acoustics, 122, 113-120. doi:https://doi.org/10.1016/j.apacoust.2017.02.014
Meng, F., Li, Y., Yuan, S., Wang, W., Zheng, Y., & Osman, M. K. (2020). Multiobjective combination optimization of an impeller and diffuser in a reversible axial-flow pump based on a two-layer artificial neural network. Processes, 8(3), 309.
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recycling of seashell waste in concrete: A review. Construction and Building Materials, 162, 751-764.
Mohamad, N., Muthusamy, K., & Ismail, M. A. K. E. G. (2021). Cockle Shell as Mixing Ingredient in Concrete: A Review. CONSTRUCTION, 1(2), 9-20.
Moodi, Y., Mousavi, S. R., Ghavidel, A., Sohrabi, M. R., & Rashki, M. (2018). Using response surface methodology and providing a modified model using whale algorithm for estimating the compressive strength of columns confined with FRP sheets. Construction and Building Materials, 183, 163-170.
Poorarbabi, A., Ghasemi, M., & Moghaddam, M. A. (2020). Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, 11(4), 939-949.
Ruslan, H. N., Muthusamy, K., Ariffin, N. F., Wahab, M. M. A., & Mohamad, N. (2022). Effect of crushed cockle shell as partial fine aggregate replacement on workability and strength of lightweight concrete. Materials Today: Proceedings, 48, 1826-1830.
Sitorus, A., Novrinaldi, & Bulan, R. (2020). Non-invasive moisture content measurement system based on the ESP8266 microcontroller. Bulletin of Electrical Engineering and Informatics, 9(3), 924-932. doi:10.11591/eei.v9i3.2178
Soundarya, N. (2021). A review on the physical & chemical properties of sea sand to be used a replacement to fine aggregate in concrete. Materials Today: Proceedings.
Yirgu, Z., Leta, S., Hussen, A., Khan, M. M., & Aragaw, T. (2021). Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon, 7(5), e07115. doi:https://doi.org/10.1016/j.heliyon.2021.e07115
Zam, H. P., Abidin, E. Z., Karuppiah, K., & Salit, M. S. (2019). Humidity Controlling Material Development from Diatomite, Waste Glass and Cockle Shell Powder: An Experimental Study. Malaysian Journal of Medicine and Health Sciences, 15(204).
Zhang, Q., Feng, X., Chen, X., & Lu, K. (2020). Mix design for recycled aggregate pervious concrete based on response surface methodology. Construction and Building Materials, 259, 119776. doi:https://doi.org/10.1016/j.conbuildmat.2020.119776