How to cite this paper
Helal, M., Kashmeery, T., Zakariah, M & Shisha, W. (2024). Internet of things and intrusion detection fog computing architectures using machine learning techniques.Decision Science Letters , 13(4), 767-782.
Refrences
Ahmad, F. (2022). Deep image retrieval using artificial neural network interpolation and indexing based on similarity measurement. CAAI Transactions on Intelligence Technology, 7(2), 200-218.
Al-Hashedi, A., Al-Fuhaidi, B., Mohsen, A. M., Ali, Y., Gamal Al-Kaf, H. A., Al-Sorori, W., & Maqtary, N. (2022). Ensemble Classifiers for Arabic Sentiment Analysis of Social Network (Twitter Data) towards COVID‐19‐Related Conspiracy Theories. Applied Computational Intelligence and Soft Computing, 2022(1), 6614730.
Aliyu, F., Sheltami, T., Deriche, M., & Nasser, N. (2022). Human immune-based intrusion detection and prevention system for fog computing. Journal of Network and Systems Management, 30(1), 11.
Alneyadi, S., Sithirasenan, E., & Muthukkumarasamy, V. (2016). A survey on data leakage prevention systems. Journal of Network and Computer Applications, 62, 137-152.
Benmessahel, I., Xie, K., Chellal, M., & Semong, T. (2019). A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization. Evolutionary Intelligence, 12, 131-146.
Bezerra, V. H., da Costa, V. G. T., Barbon Junior, S., Miani, R. S., & Zarpelão, B. B. (2019). IoTDS: A one-class classification approach to detect botnets in Internet of Things devices. Sensors, 19(14), 3188.
Bustamante-Bello, R., García-Barba, A., Arce-Saenz, L. A., Curiel-Ramirez, L. A., Izquierdo-Reyes, J., & Ramirez-Mendoza, R. A. (2022). Visualizing street pavement anomalies through fog computing v2i networks and machine learning. Sensors, 22(2), 456.
Daoud, M., Dahmani, Y., Bendaoud, M., Ouared, A., & Ahmed, H. (2023). Convolutional neural network-based high-precision and speed detection system on CIDDS-001. Data & Knowledge Engineering, 144, 102130.
De Souza, C. A., Westphall, C. B., & Machado, R. B. (2022). Two-step ensemble approach for intrusion detection and identification in IoT and fog computing environments. Computers & Electrical Engineering, 98, 107694.
Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. International journal of advanced research in computer and communication engineering, 4(6), 446-452.
Dhirani, L. L., Mukhtiar, N., Chowdhry, B. S., & Newe, T. (2023). Ethical dilemmas and privacy issues in emerging technologies: A review. Sensors, 23(3), 1151.
Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761-768.
Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A. Y., & Ranjan, R. (2019). A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Transactions on Network and Service Management, 16(3), 924-935.
Gupta, A., & Namasudra, S. (2022). A novel technique for accelerating live migration in cloud computing. Automated Software Engineering, 29(1), 34.
Jaiswal, R., Chakravorty, A., & Rong, C. (2020, August). Distributed fog computing architecture for real-time anomaly detection in smart meter data. In 2020 IEEE sixth international conference on big data computing service and applications (BigDataService) (pp. 1-8). IEEE.
Janarthanan, T., & Zargari, S. (2017, June). Feature selection in UNSW-NB15 and KDDCUP'99 datasets. In 2017 IEEE 26th international symposium on industrial electronics (ISIE) (pp. 1881-1886). IEEE.
Kayan, H., Majib, Y., Alsafery, W., Barhamgi, M., & Perera, C. (2021). AnoML-IoT: An end to end re-configurable multi-protocol anomaly detection pipeline for Internet of Things. Internet of Things, 16, 100437. https://doi.org/10.1016/j.iot.2021.100437.
Ketu, S., & Mishra, P. K. (2020). Performance analysis of machine learning algorithms for IoT-based human activity recognition. In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2019 (pp. 579-591). Springer Singapore.
Kochhar, S. K., Bhatia, A., & Tomer, N. (2023). Using Deep Learning and Big Data Analytics for Managing Cyber-Attacks. In New Approaches to Data Analytics and Internet of Things Through Digital Twin (pp. 146-178). IGI Global.
Labiod, Y., Amara Korba, A., & Ghoualmi, N. (2022). Fog computing-based intrusion detection architecture to protect iot networks. Wireless Personal Communications, 125(1), 231-259.
Lohani, K., Bhardwaj, P., & Tomar, R. (2022). Fog Computing and Machine Learning. In Fog Computing (pp. 133-151). Chapman and Hall/CRC.
Lu, Y., & Da Xu, L. (2018). Internet of Things (IoT) cybersecurity research: A review of current research topics. IEEE Internet of Things Journal, 6(2), 2103-2115.
Manimurugan, S. (2021). IoT-Fog-Cloud model for anomaly detection using improved Naïve Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing, 1-10.
Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., ... & Haleem, M. (2022). A machine learning-based classification and prediction technique for DDoS attacks. IEEE Access, 10, 21443-21454.
Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In 2015 military communications and information systems conference (MilCIS) (pp. 1-6). IEEE.
Moustafa, N., Hu, J., & Slay, J. (2019). A holistic review of network anomaly detection systems: A comprehensive survey. Journal of Network and Computer Applications, 128, 33-55.
O'Reilly, C., Gluhak, A., Imran, M. A., & Rajasegarar, S. (2014). Anomaly detection in wireless sensor networks in a non-stationary environment. IEEE Communications Surveys & Tutorials, 16(3), 1413-1432.
Pacheco, J., Benitez, V. H., Felix-Herran, L. C., & Satam, P. (2020). Artificial neural networks-based intrusion detection system for internet of things fog nodes. IEEE Access, 8, 73907-73918.
Prabavathy, S., Sundarakantham, K., & Shalinie, S. M. (2018). Design of cognitive fog computing for intrusion detection in Internet of Things. Journal of Communications and Networks, 20(3), 291-298.
Prasad, N. R., Almanza-Garcia, S., & Lu, T.T. (2009). Anomaly Detection. ACM Computing Surveys, 14(1), 1–22. https://doi.org/10.1145/1541880.1541882.
Shakeel, N., & Shakeel, S. (2022). Context-free word importance scores for attacking neural networks. Journal of Computational and Cognitive Engineering, 1(4), 187-192.
Shipe, M. E., Deppen, S. A., Farjah, F., & Grogan, E. L. (2019). Developing prediction models for clinical use using logistic regression: an overview. Journal of thoracic disease, 11(Suppl 4), S574.
Tertytchny, G., Nicolaou, N., & Michael, M. K. (2020). Classifying network abnormalities into faults and attacks in IoT-based cyber physical systems using machine learning. Microprocessors and Microsystems, 77, 103121.
Tomer, V., & Sharma, S. (2022). Detecting IoT attacks using an ensemble machine learning model. Future Internet, 14(4), 102. https://doi.org/10.3390/fi14040102.
Tran, N., Chen, H., Jiang, J., Bhuyan, J., & Ding, J. (2021). Effect of class imbalance on the performance of machine learning-based network intrusion detection. International Journal of Performability Engineering, 17(9), 741.
Verma, A., & Ranga, V. (2020). Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications, 111(4), 2287-2310.
Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework. Journal of Cloud Computing, 12(1), 7.
Yin, Y., Jang-Jaccard, J., Xu, W., Singh, A., Zhu, J., Sabrina, F., & Kwak, J. (2023). IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset. Journal of Big Data, 10(1), 15.
Zhou, X., Hu, Y., Liang, W., Ma, J., & Jin, Q. (2020). Variational LSTM enhanced anomaly detection for industrial big data. IEEE Transactions on Industrial Informatics, 17(5), 3469-3477.
Al-Hashedi, A., Al-Fuhaidi, B., Mohsen, A. M., Ali, Y., Gamal Al-Kaf, H. A., Al-Sorori, W., & Maqtary, N. (2022). Ensemble Classifiers for Arabic Sentiment Analysis of Social Network (Twitter Data) towards COVID‐19‐Related Conspiracy Theories. Applied Computational Intelligence and Soft Computing, 2022(1), 6614730.
Aliyu, F., Sheltami, T., Deriche, M., & Nasser, N. (2022). Human immune-based intrusion detection and prevention system for fog computing. Journal of Network and Systems Management, 30(1), 11.
Alneyadi, S., Sithirasenan, E., & Muthukkumarasamy, V. (2016). A survey on data leakage prevention systems. Journal of Network and Computer Applications, 62, 137-152.
Benmessahel, I., Xie, K., Chellal, M., & Semong, T. (2019). A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization. Evolutionary Intelligence, 12, 131-146.
Bezerra, V. H., da Costa, V. G. T., Barbon Junior, S., Miani, R. S., & Zarpelão, B. B. (2019). IoTDS: A one-class classification approach to detect botnets in Internet of Things devices. Sensors, 19(14), 3188.
Bustamante-Bello, R., García-Barba, A., Arce-Saenz, L. A., Curiel-Ramirez, L. A., Izquierdo-Reyes, J., & Ramirez-Mendoza, R. A. (2022). Visualizing street pavement anomalies through fog computing v2i networks and machine learning. Sensors, 22(2), 456.
Daoud, M., Dahmani, Y., Bendaoud, M., Ouared, A., & Ahmed, H. (2023). Convolutional neural network-based high-precision and speed detection system on CIDDS-001. Data & Knowledge Engineering, 144, 102130.
De Souza, C. A., Westphall, C. B., & Machado, R. B. (2022). Two-step ensemble approach for intrusion detection and identification in IoT and fog computing environments. Computers & Electrical Engineering, 98, 107694.
Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. International journal of advanced research in computer and communication engineering, 4(6), 446-452.
Dhirani, L. L., Mukhtiar, N., Chowdhry, B. S., & Newe, T. (2023). Ethical dilemmas and privacy issues in emerging technologies: A review. Sensors, 23(3), 1151.
Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761-768.
Garg, S., Kaur, K., Kumar, N., Kaddoum, G., Zomaya, A. Y., & Ranjan, R. (2019). A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Transactions on Network and Service Management, 16(3), 924-935.
Gupta, A., & Namasudra, S. (2022). A novel technique for accelerating live migration in cloud computing. Automated Software Engineering, 29(1), 34.
Jaiswal, R., Chakravorty, A., & Rong, C. (2020, August). Distributed fog computing architecture for real-time anomaly detection in smart meter data. In 2020 IEEE sixth international conference on big data computing service and applications (BigDataService) (pp. 1-8). IEEE.
Janarthanan, T., & Zargari, S. (2017, June). Feature selection in UNSW-NB15 and KDDCUP'99 datasets. In 2017 IEEE 26th international symposium on industrial electronics (ISIE) (pp. 1881-1886). IEEE.
Kayan, H., Majib, Y., Alsafery, W., Barhamgi, M., & Perera, C. (2021). AnoML-IoT: An end to end re-configurable multi-protocol anomaly detection pipeline for Internet of Things. Internet of Things, 16, 100437. https://doi.org/10.1016/j.iot.2021.100437.
Ketu, S., & Mishra, P. K. (2020). Performance analysis of machine learning algorithms for IoT-based human activity recognition. In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2019 (pp. 579-591). Springer Singapore.
Kochhar, S. K., Bhatia, A., & Tomer, N. (2023). Using Deep Learning and Big Data Analytics for Managing Cyber-Attacks. In New Approaches to Data Analytics and Internet of Things Through Digital Twin (pp. 146-178). IGI Global.
Labiod, Y., Amara Korba, A., & Ghoualmi, N. (2022). Fog computing-based intrusion detection architecture to protect iot networks. Wireless Personal Communications, 125(1), 231-259.
Lohani, K., Bhardwaj, P., & Tomar, R. (2022). Fog Computing and Machine Learning. In Fog Computing (pp. 133-151). Chapman and Hall/CRC.
Lu, Y., & Da Xu, L. (2018). Internet of Things (IoT) cybersecurity research: A review of current research topics. IEEE Internet of Things Journal, 6(2), 2103-2115.
Manimurugan, S. (2021). IoT-Fog-Cloud model for anomaly detection using improved Naïve Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing, 1-10.
Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., ... & Haleem, M. (2022). A machine learning-based classification and prediction technique for DDoS attacks. IEEE Access, 10, 21443-21454.
Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In 2015 military communications and information systems conference (MilCIS) (pp. 1-6). IEEE.
Moustafa, N., Hu, J., & Slay, J. (2019). A holistic review of network anomaly detection systems: A comprehensive survey. Journal of Network and Computer Applications, 128, 33-55.
O'Reilly, C., Gluhak, A., Imran, M. A., & Rajasegarar, S. (2014). Anomaly detection in wireless sensor networks in a non-stationary environment. IEEE Communications Surveys & Tutorials, 16(3), 1413-1432.
Pacheco, J., Benitez, V. H., Felix-Herran, L. C., & Satam, P. (2020). Artificial neural networks-based intrusion detection system for internet of things fog nodes. IEEE Access, 8, 73907-73918.
Prabavathy, S., Sundarakantham, K., & Shalinie, S. M. (2018). Design of cognitive fog computing for intrusion detection in Internet of Things. Journal of Communications and Networks, 20(3), 291-298.
Prasad, N. R., Almanza-Garcia, S., & Lu, T.T. (2009). Anomaly Detection. ACM Computing Surveys, 14(1), 1–22. https://doi.org/10.1145/1541880.1541882.
Shakeel, N., & Shakeel, S. (2022). Context-free word importance scores for attacking neural networks. Journal of Computational and Cognitive Engineering, 1(4), 187-192.
Shipe, M. E., Deppen, S. A., Farjah, F., & Grogan, E. L. (2019). Developing prediction models for clinical use using logistic regression: an overview. Journal of thoracic disease, 11(Suppl 4), S574.
Tertytchny, G., Nicolaou, N., & Michael, M. K. (2020). Classifying network abnormalities into faults and attacks in IoT-based cyber physical systems using machine learning. Microprocessors and Microsystems, 77, 103121.
Tomer, V., & Sharma, S. (2022). Detecting IoT attacks using an ensemble machine learning model. Future Internet, 14(4), 102. https://doi.org/10.3390/fi14040102.
Tran, N., Chen, H., Jiang, J., Bhuyan, J., & Ding, J. (2021). Effect of class imbalance on the performance of machine learning-based network intrusion detection. International Journal of Performability Engineering, 17(9), 741.
Verma, A., & Ranga, V. (2020). Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications, 111(4), 2287-2310.
Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and prediction for cloud applications: a novel ensemble learning-based framework. Journal of Cloud Computing, 12(1), 7.
Yin, Y., Jang-Jaccard, J., Xu, W., Singh, A., Zhu, J., Sabrina, F., & Kwak, J. (2023). IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset. Journal of Big Data, 10(1), 15.
Zhou, X., Hu, Y., Liang, W., Ma, J., & Jin, Q. (2020). Variational LSTM enhanced anomaly detection for industrial big data. IEEE Transactions on Industrial Informatics, 17(5), 3469-3477.