How to cite this paper
Alsharaiah, M., Abualhaj, M., Baniata, L., Al-saaidah, A., Kharma, Q & Al-Zyoud, M. (2024). An innovative network intrusion detection system (NIDS): Hierarchical deep learning model based on Unsw-Nb15 dataset.International Journal of Data and Network Science, 8(2), 709-722.
Refrences
Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE access, 6, 33789-33795.
Alsharaiah, M. A., Baniata, L. H., Adwan, O., Abu-Shareha, A. A., Alhaj, M. A., Kharma, Q., ... & Baniata10, M. (2022). Attention-based Long Short Term Memory Model for DNA Damage Prediction in Mammalian Cells. development, 13(9).
Ambusaidi, M. A., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection system using a filter-based feature selection algorithm. IEEE transactions on computers, 65(10), 2986-2998.
Bengio, Y., Delalleau, O., & Roux, N. (2005). The curse of highly variable functions for local kernel machines. Advances in neural information processing systems, 18.
Biswas, S. K. (2018). Intrusion detection using machine learning: A comparison study. International Journal of pure and applied mathematics, 118(19), 101-114.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Cisco. (2003). Guide to Secure Intrusion Detection Systems. Cisco Security Professional's Guide to Secure Intrusion De-tection Systems.
da Costa, N. L., de Lima, M. D., & Barbosa, R. (2021). Evaluation of feature selection methods based on artificial neural network weights. Expert Systems with Applications, 168, 114312.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine learning, 7, 195-225.
Elsayed, R., Hamada, R., Hammoudeh, M., Abdalla, M., & Elsaid, S. A. (2022). A Hierarchical Deep Learning-Based In-trusion Detection Architecture for Clustered Internet of Things. Journal of Sensor and Actuator Networks, 12(1), 3.
Fu J, Z. (2017). Look closer to see better: recurrent attention convolutional neural network for fine-grained image recogni-tion. IEEE Conference on Computer Vision and Pattern Recognition, 4476-4484.
Gao, J., Chai, S., Zhang, B., & Xia, Y. (2019). Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis. Energies, 12(7), 1223.
Han, J., & Pak, W. (2023). Hierarchical LSTM-Based Network Intrusion Detection System Using Hybrid Classification. Applied Sciences, 13(5), 3089.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hu, W., Gao, J., Wang, Y., Wu, O., & Maybank, S. (2013). Online adaboost-based parameterized methods for dynamic distributed network intrusion detection. IEEE Transactions on Cybernetics, 44(1), 66-82.
Janarthanan, T., & Zargari, S. (2017, June). Feature selection in UNSW-NB15 and KDDCUP'99 datasets. In 2017 IEEE 26th international symposium on industrial electronics (ISIE) (pp. 1881-1886). IEEE.
Jiang, K., Wang, W., Wang, A., & Wu, H. (2020). Network intrusion detection combined hybrid sampling with deep hier-archical network. IEEE access, 8, 32464-32476.
Khammassi, C., & Krichen, S. (2017). A GA-LR wrapper approach for feature selection in network intrusion detection. computers & security, 70, 255-277.
Khan, N. M., Madhav C, N., Negi, A., & Thaseen, I. S. (2020). Analysis on improving the performance of machine learn-ing models using feature selection technique. In Intelligent Systems Design and Applications: 18th International Con-ference on Intelligent Systems Design and Applications (ISDA 2018) held in Vellore, India, December 6-8, 2018, Vol-ume 2 (pp. 69-77). Springer International Publishing.
Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887.
Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887.
Kumar, V., Sinha, D., Das, A. K., Pandey, S. C., & Goswami, R. T. (2020). An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset. Cluster Computing, 23, 1397-1418.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Pro-ceedings of the IEEE, 86(11), 2278-2324.
Michalas, A., & Murray, R. (2017, October). MemTri: A memory forensics triage tool using bayesian network and volatil-ity. In Proceedings of the 2017 International Workshop on Managing Insider Security Threats (pp. 57-66).
Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a comprehensive data set for network intrusion detection sys-tems (UNSW-NB15 network data set). In 2015 military communications and information systems conference (MilCIS) (pp. 1-6). IEEE.
Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Net-works, 3, 683–697.
Panda, M., Abraham, A., Das, S., & Patra, M. R. (2011). Network intrusion detection system: A machine learning ap-proach. Intelligent Decision Technologies, 5(4), 347-356.
Pandya, P. (2013). Computer and Information Security Handbook, 3rd ed.
Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12, 493-501.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convo-lutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
The UNSW-NB15 Dataset. (n.d.). (The UNSW-NB15 Dataset) Retrieved from https://research.unsw.edu.au/projects/unsw-nb15-dataset
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, K. (2019). Network data management model based on Naïve Bayes classifier and deep neural networks in hetero-geneous wireless networks. Computers & Electrical Engineering, 75, 135-145.
Zhang, J., Zulkernine, M., & Haque, A. (2008). Random-forests-based network intrusion detection systems. IEEE Trans-actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(5), 649-659.
Zhu, Z., Ong, Y. S., & Dash, M. (2007). Wrapper–filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1), 70-76.
Alsharaiah, M. A., Baniata, L. H., Adwan, O., Abu-Shareha, A. A., Alhaj, M. A., Kharma, Q., ... & Baniata10, M. (2022). Attention-based Long Short Term Memory Model for DNA Damage Prediction in Mammalian Cells. development, 13(9).
Ambusaidi, M. A., He, X., Nanda, P., & Tan, Z. (2016). Building an intrusion detection system using a filter-based feature selection algorithm. IEEE transactions on computers, 65(10), 2986-2998.
Bengio, Y., Delalleau, O., & Roux, N. (2005). The curse of highly variable functions for local kernel machines. Advances in neural information processing systems, 18.
Biswas, S. K. (2018). Intrusion detection using machine learning: A comparison study. International Journal of pure and applied mathematics, 118(19), 101-114.
Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Cisco. (2003). Guide to Secure Intrusion Detection Systems. Cisco Security Professional's Guide to Secure Intrusion De-tection Systems.
da Costa, N. L., de Lima, M. D., & Barbosa, R. (2021). Evaluation of feature selection methods based on artificial neural network weights. Expert Systems with Applications, 168, 114312.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine learning, 7, 195-225.
Elsayed, R., Hamada, R., Hammoudeh, M., Abdalla, M., & Elsaid, S. A. (2022). A Hierarchical Deep Learning-Based In-trusion Detection Architecture for Clustered Internet of Things. Journal of Sensor and Actuator Networks, 12(1), 3.
Fu J, Z. (2017). Look closer to see better: recurrent attention convolutional neural network for fine-grained image recogni-tion. IEEE Conference on Computer Vision and Pattern Recognition, 4476-4484.
Gao, J., Chai, S., Zhang, B., & Xia, Y. (2019). Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis. Energies, 12(7), 1223.
Han, J., & Pak, W. (2023). Hierarchical LSTM-Based Network Intrusion Detection System Using Hybrid Classification. Applied Sciences, 13(5), 3089.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hu, W., Gao, J., Wang, Y., Wu, O., & Maybank, S. (2013). Online adaboost-based parameterized methods for dynamic distributed network intrusion detection. IEEE Transactions on Cybernetics, 44(1), 66-82.
Janarthanan, T., & Zargari, S. (2017, June). Feature selection in UNSW-NB15 and KDDCUP'99 datasets. In 2017 IEEE 26th international symposium on industrial electronics (ISIE) (pp. 1881-1886). IEEE.
Jiang, K., Wang, W., Wang, A., & Wu, H. (2020). Network intrusion detection combined hybrid sampling with deep hier-archical network. IEEE access, 8, 32464-32476.
Khammassi, C., & Krichen, S. (2017). A GA-LR wrapper approach for feature selection in network intrusion detection. computers & security, 70, 255-277.
Khan, N. M., Madhav C, N., Negi, A., & Thaseen, I. S. (2020). Analysis on improving the performance of machine learn-ing models using feature selection technique. In Intelligent Systems Design and Applications: 18th International Con-ference on Intelligent Systems Design and Applications (ISDA 2018) held in Vellore, India, December 6-8, 2018, Vol-ume 2 (pp. 69-77). Springer International Publishing.
Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887.
Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887.
Kumar, V., Sinha, D., Das, A. K., Pandey, S. C., & Goswami, R. T. (2020). An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset. Cluster Computing, 23, 1397-1418.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Pro-ceedings of the IEEE, 86(11), 2278-2324.
Michalas, A., & Murray, R. (2017, October). MemTri: A memory forensics triage tool using bayesian network and volatil-ity. In Proceedings of the 2017 International Workshop on Managing Insider Security Threats (pp. 57-66).
Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a comprehensive data set for network intrusion detection sys-tems (UNSW-NB15 network data set). In 2015 military communications and information systems conference (MilCIS) (pp. 1-6). IEEE.
Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Net-works, 3, 683–697.
Panda, M., Abraham, A., Das, S., & Patra, M. R. (2011). Network intrusion detection system: A machine learning ap-proach. Intelligent Decision Technologies, 5(4), 347-356.
Pandya, P. (2013). Computer and Information Security Handbook, 3rd ed.
Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12, 493-501.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convo-lutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
The UNSW-NB15 Dataset. (n.d.). (The UNSW-NB15 Dataset) Retrieved from https://research.unsw.edu.au/projects/unsw-nb15-dataset
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, K. (2019). Network data management model based on Naïve Bayes classifier and deep neural networks in hetero-geneous wireless networks. Computers & Electrical Engineering, 75, 135-145.
Zhang, J., Zulkernine, M., & Haque, A. (2008). Random-forests-based network intrusion detection systems. IEEE Trans-actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(5), 649-659.
Zhu, Z., Ong, Y. S., & Dash, M. (2007). Wrapper–filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1), 70-76.