How to cite this paper
Yusriski, R., Astuti, B., Biksono, D & Wardani, T. (2021). A single machine multi-job integer batch scheduling problem with multi due date to minimize total actual flow time.Decision Science Letters , 10(3), 231-240.
Refrences
Albers, S., & Brucker, P. (1993). The complexity of one-machine batching problems. Discrete Applied Mathematics, 47, 87-107.
Baptiste, P. (2000). Batching Identical Jobs. Mathematical Methods of Operational Research, 52(3), 355-367.
Basir, S. A., & Karimian, Y. (2018). A Green Mathematical Model for a Single-Machine Scheduling Problem with Batch Delivery System. The-12th International NCM Conference: Challenges in Industrial Engineering & Operation Management. 34-37.
Halim, A.H., Miyazaki, S., & Ohta, H. (1994). Batch scheduling problem to minimize actual flow times of component through the shop under JIT environment. European Journal of Operational Research, 72, 529-544.
Hamidinia, A., Khakabimamaghani, S., Mazdeh, M. M., & Jafari, M. (2012). A genetic algorithm for minimizing total tardiness/earliness of weighted jobs. Computers & Industrial Engineering. 65, 29-38.
Hazir, Ö., & Sidhoum, S. K. (2014). Batch sizing and just-in-time scheduling with common due date. Annals of Operations Research, 213, 187–202.
Maulidya, R., Suprayogi., Wangsaputra, R., & Halim, A. H. (2019). Batch Scheduling for Multi Due Date Heterogeneous Machines with Reentrant Flow to Minimize Total Tardiness. IOP Conf. Series: Materials Science and Engineering, 528 (1), 1-8.
Mazdeh, M. M., Hamidini, A., & Karamouzian, A. (2011). Mathematical model for weighted tardy jobs scheduling problem with a batched delivery system. International Journal of Industrial Engineering Computations, 2, 491–498.
Min Ji, M., He, Y., & Cheng, T.C.E. (2007). Batch delivery scheduling with batch delivery cost on a single machine. European Journal of Operational Research, 176, 745–755.
Mohri, S., Masuda, T., & HiroakiIshii. (2011). Batch Scheduling Problem with Multiple Due-dates Constraints. Industrial Engineering & Management Systems, 10(1), 1-6.
Nurainun, T., Fudholi, A., Hartati, M., Yendra, R., & Kusumanto, I. (2016) A multi due date batch scheduling model on dynamic flow shop to minimize total production cost. Contemporary Engineering Sciences, 9(7), 315 – 324.
Prasetyaningsih, E., Suprayogi, S., Samadhi, T. M. A. A., & Halim, A. H. (2017). Production and Delivery Batch Scheduling with Multiple Due Dates to Minimize Total Cost. Journal of Engineering and Technological Sciences, 49(1), 16-36.
Rasti-Barzoki, M., Hejazi, S.R., & Mazdeh, M.M.(2013). A branch and bound algorithm to minimize the total weighed number of tardy jobs and delivery costs. Applied Mathematical Modelling, 37(7), 4924-4937.
Xie, X., & Wang X. (2014). Single-machine batch delivery scheduling and common due date assignment with identical processing times. Applied Mechanics and Materials, 635-637, 1884-1889.
Yin, Y., Cheng, T.C.E., Cheng, S-R., & Wu, C-C (2013) Single-machine batch delivery scheduling with an assignable common due date and controllable processing times. Computers & Industrial Engineering, 65, 652–662.
Yusriski, R., Astuti, B., & Ilham, M. (2019). Integrated Batch Production and Multiple Preventive Maintenance Scheduling on A Single Machine to Minimize Total Actual Flow Time. IOP Conf. Series: Materials Science and Engineering, 598 (1), 1-8.
Yusriski, R., Astuti, B., Samadhi, T. M. A. A., & Halim, A. H. (2015a). Integer batch scheduling problems for a single-machine to minimize total actual flow time. Procedia Manufacturing, 2, 118-123.
Yusriski, R., Sukoyo, S., Samadhi, T. M. A. A., & Halim, A. H. (2015b). Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time. International Journal of Industrial Engineering Computations, 6(3), 365-378.
Yusriski, R., Sukoyo., Samadhi, T. M. A. A., & Halim, A. H. (2016). An integer batch scheduling model for a single machine with simultaneous learning and deterioration effects to minimize total actual flow time. IOP Conf. Series: Materials Science and Engineering, 114(1), 1-10.
Yusriski, R., Sukoyo., Samadhi, T. M. A. A., & Halim, A. H. (2018). An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost. IOP Conf. Series: Materials Science and Engineering, 319(1), 1-7.
Baptiste, P. (2000). Batching Identical Jobs. Mathematical Methods of Operational Research, 52(3), 355-367.
Basir, S. A., & Karimian, Y. (2018). A Green Mathematical Model for a Single-Machine Scheduling Problem with Batch Delivery System. The-12th International NCM Conference: Challenges in Industrial Engineering & Operation Management. 34-37.
Halim, A.H., Miyazaki, S., & Ohta, H. (1994). Batch scheduling problem to minimize actual flow times of component through the shop under JIT environment. European Journal of Operational Research, 72, 529-544.
Hamidinia, A., Khakabimamaghani, S., Mazdeh, M. M., & Jafari, M. (2012). A genetic algorithm for minimizing total tardiness/earliness of weighted jobs. Computers & Industrial Engineering. 65, 29-38.
Hazir, Ö., & Sidhoum, S. K. (2014). Batch sizing and just-in-time scheduling with common due date. Annals of Operations Research, 213, 187–202.
Maulidya, R., Suprayogi., Wangsaputra, R., & Halim, A. H. (2019). Batch Scheduling for Multi Due Date Heterogeneous Machines with Reentrant Flow to Minimize Total Tardiness. IOP Conf. Series: Materials Science and Engineering, 528 (1), 1-8.
Mazdeh, M. M., Hamidini, A., & Karamouzian, A. (2011). Mathematical model for weighted tardy jobs scheduling problem with a batched delivery system. International Journal of Industrial Engineering Computations, 2, 491–498.
Min Ji, M., He, Y., & Cheng, T.C.E. (2007). Batch delivery scheduling with batch delivery cost on a single machine. European Journal of Operational Research, 176, 745–755.
Mohri, S., Masuda, T., & HiroakiIshii. (2011). Batch Scheduling Problem with Multiple Due-dates Constraints. Industrial Engineering & Management Systems, 10(1), 1-6.
Nurainun, T., Fudholi, A., Hartati, M., Yendra, R., & Kusumanto, I. (2016) A multi due date batch scheduling model on dynamic flow shop to minimize total production cost. Contemporary Engineering Sciences, 9(7), 315 – 324.
Prasetyaningsih, E., Suprayogi, S., Samadhi, T. M. A. A., & Halim, A. H. (2017). Production and Delivery Batch Scheduling with Multiple Due Dates to Minimize Total Cost. Journal of Engineering and Technological Sciences, 49(1), 16-36.
Rasti-Barzoki, M., Hejazi, S.R., & Mazdeh, M.M.(2013). A branch and bound algorithm to minimize the total weighed number of tardy jobs and delivery costs. Applied Mathematical Modelling, 37(7), 4924-4937.
Xie, X., & Wang X. (2014). Single-machine batch delivery scheduling and common due date assignment with identical processing times. Applied Mechanics and Materials, 635-637, 1884-1889.
Yin, Y., Cheng, T.C.E., Cheng, S-R., & Wu, C-C (2013) Single-machine batch delivery scheduling with an assignable common due date and controllable processing times. Computers & Industrial Engineering, 65, 652–662.
Yusriski, R., Astuti, B., & Ilham, M. (2019). Integrated Batch Production and Multiple Preventive Maintenance Scheduling on A Single Machine to Minimize Total Actual Flow Time. IOP Conf. Series: Materials Science and Engineering, 598 (1), 1-8.
Yusriski, R., Astuti, B., Samadhi, T. M. A. A., & Halim, A. H. (2015a). Integer batch scheduling problems for a single-machine to minimize total actual flow time. Procedia Manufacturing, 2, 118-123.
Yusriski, R., Sukoyo, S., Samadhi, T. M. A. A., & Halim, A. H. (2015b). Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time. International Journal of Industrial Engineering Computations, 6(3), 365-378.
Yusriski, R., Sukoyo., Samadhi, T. M. A. A., & Halim, A. H. (2016). An integer batch scheduling model for a single machine with simultaneous learning and deterioration effects to minimize total actual flow time. IOP Conf. Series: Materials Science and Engineering, 114(1), 1-10.
Yusriski, R., Sukoyo., Samadhi, T. M. A. A., & Halim, A. H. (2018). An integer batch scheduling model considering learning, forgetting, and deterioration effects for a single machine to minimize total inventory holding cost. IOP Conf. Series: Materials Science and Engineering, 319(1), 1-7.