How to cite this paper
Hirani, B & Gurubaxani, S. (2025). Green and sustainable one-pot synthesis of novel tetrahydropyridines using [Et3NH][HSO4] as an ionic liquid catalyst.Current Chemistry Letters, 14(2), 389-398.
Refrences
[1]. An, Y., & Wu, J. (2017). Synthesis of Tetrahydropyridine Derivatives through a Reaction of 1,6 Enynes, Sulfur Dioxide, and Aryldiazonium Tetrafluoroborates. Org. Lett., 19(21), 6028–6031.
[2]. Jeschke P. (2004). The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem., 5(5), 571-589.
[3]. Balaskar, R., Gavade, S., Mane, M., Pabrekar, P., Shingare, M., & Mane, D. (2011). Triethylammonium Acetate [TEAA]: An Efficient Catalyst for One Pot Synthesis of Tetrahydro-4H-chromene Derivatives. Lett. Org. Chem., 8(4), 282–286.
[4]. Bhat, N. S., Mal, S. S., & Dutta, S. (2022). [Et3NH] [HSO4] as an efficient and inexpensive ionic liquid catalyst for the scalable preparation of biorenewable chemicals. Biomass Convers. Biorefin., 12(12), 5619–5625.
[5]. Brandt-Talbot, A., Gschwend, F. J. V., Fennell, P. S., Lammens, T. M., Tan, B., Weale, J., & Hallett, J. P. (2017). An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem., 19(13), 3078–3102.
[6]. Adam, B. (2023). Nucleophilic aromatic substitution of fluoroarenes to synthesise drug compounds for combatting neglected tropical diseases. LoughboroughUniversity.Thesis.
[7]. Chen, L., Sharifzadeh, M., Mac Dowell, N., Welton, T., Shah, N., & Hallett, J. P. (2014). Inexpensive ionic liquids: [HSO 4 ] − -based solvent production at bulk scale. Green Chem., 16(6), 3098–3106.
[8]. Davanagere, P. M., De, M., Chanda, K., & Maiti, B. (2023). Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organo catalyst. Catal., 13(1), 209-221.
[9]. Eshghi, H., Khojastehnezhad, A., Moeinpour, F., Bakavoli, M., Seyedi, S. M., & Abbasi, M. (2014). Synthesis, characterization and first application of keggin-type heteropoly acids supported on silica coated NiFe2O 4 as novel magnetically catalysts for the synthesis of tetrahydropyridines. RSC Adv., 4(75), 39782-39789.
[10]. Kim, J.G., Kang, O.Y., Kim, S.M., Issabayeva, G., Oh, I.S., Lee, Y.S , Lee, W.H., Lim H.J., Park, S.J. (2020). Synthesis and Properties of Pentafluorosulfanyl Group (SF5)-Containing Meta-Diamide Insecticides. Molecules. 25(12). 5536-5551.
[11]. Favi, G. (2020). Modern Strategies for Heterocycle Synthesis. Molecules, 25(11), 2476-2489.
[12]. Jadhav, C., Nipate, A., Chate, A., & Gill, C. (2021). Triethylammonium Hydrogen Sulfate [Et 3 NH][HSO 4 ]-Catalyzed Rapid and Efficient Multicomponent Synthesis of Pyrido[2,3- d ]pyrimidine and Pyrazolo[3,4- b ]pyridine Hybrids. ACS Omega, 6(28), 18215–18225.
[13]. Jeddi, B., Saberi, S., Menéndez, J. C., & Sepehri, S. (2022). Synthesis and Biological Evaluation of Tetrahydropyrimidine and Dihydropyridine Derivatives Against Leishmania Major. Acta Parasitologica, 67(1), 255–266.
[14]. Kale, S. R., & Surve, S. K. (2021). One-pot multicomponent synthesis of highly substituted pyridines using hydrotalcite as a solid base and reusable catalyst. Curr. Chem. Lett., 169–174.
[15]. Kamal, A., Babu, K. S., Vishnu Vardhan, M. V. P. S., Hussaini, S. M. A., Mahesh, R., Shaik, S. P., & Alarifi, A. (2015). Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles. ACS Med. Chem. Lett. 2017, 8( 12), 1331–1335
[16]. Khan, S. A., Asiri, A. M., Kumar, S., & Sharma, K. (2014). Green synthesis, antibacterial activity and computational study of pyrazoline and pyrimidine derivatives from 3-(3,4-dimethoxy-phenyl-1-(2,5-dimethyl-thiophen-3-yl)-propenone. Eur. J. Chem., 5(1), 85–90.
[17]. Ma, X., & Zhang, W. (2022). Recent developments in one-pot stepwise synthesis(OPSS) of small molecules. iScience, 25(9), 105005-105012.
[18]. Machado, I. V., Dos Santos, J. R. N., Januario, M. A. P., & Corrêa, A. G. (2021). Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem.,78,105704-105711.
[19]. Mali, A. S., Potnis, C. S., & Chaturbhuj, G. U. (2018). Aluminized polyborate: A novel catalyst for the multicomponent solvent-free synthesis of alkyl 1,2,6-trisubstituted-4-[(hetero)arylamino]-1,2,5,6-tetrahydropyridine-3-carboxylates. J. Iran. Chem. Soc., 15(6), 1399–1409.
[20]. M’hamed, M. O., & Khezami, L. (2019). 1,2,3,4-Tetrahydropyrimidine Derivative for Selective and Fast Uptake of Cadmium Ions from Aqueous Solution. Environments, 6(6),68-81.
[21]. Pasuparthy, S. D., & Maiti, B. (2022). [CMMIM][BF 4– ] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d ]pyrido[1,2- a ]pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS Omega, 7(43), 39147–39158.
[22]. Insuasty, D., Castillo, J., Becerra, D., Rojas, H., & Abonia, R. (2020). Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules , 25(3), 505-523.
[23]. Ramin, G.-V., & Hajar, S. (2013). Highly efficient one-pot synthesis of tetrahydropyridines. C. R. Chimi., 16(11), 1047–1054.
[24]. Sagmeister, P., Kaldre, D., Sedelmeier, J., Moessner, C., Püntener, K., Kummli, D., Williams, J. D., & Kappe, C. O. (2021). Intensified Continuous Flow Synthesis and Workup of 1,5-Disubstituted Tetrazoles Enhanced by Real-Time Process Analytics. Org. Proc. Res. Dev., 25(5), 1206–1214.
[25]. Sarkate, A., Sangshetti, J. N., Dharbale, N. B., Sarkate, A. P., & Shinde, D. B. (2015). Sulfamic acid catalyzed five component reaction for efficient and one-pot synthesis of densely functionalized tetrahydropyridine scaffold J. Chil. Chem. Soc., 60 (1), 2832–2836.
[26]. Rostamizadeh, S. & Sadeghi, K. (2002). One-Pot Synthesis of 1,2,4-Triazines. Synth. Commun., 32. 1899-1902.
[27]. Shmukler, L. E., Gruzdev, M. S., Kudryakova, N. O., Fadeeva, Y. A., Kolker, A. M., & Safonova, L. P. (2018). Triethylammonium-based protic ionic liquids with sulfonic acids: Phase behavior and electrochemistry. J. Mol. Liq., 266, 139–146.
[28]. Singh, P., Yadav, P., Mishra, A., & Awasthi, S. K. (2020). Green and Mechanochemical One-Pot Multicomponent Synthesis of Bioactive 2-amino-4 H -benzo[ b ]pyrans via Highly Efficient Amine-Functionalized SiO2@Fe3O4 Nanoparticles. ACS Omega, 5(8), 4223–4232.
[29]. Verma, A., Bharti, R., & Sharma, R. (2021). Effect of Methods and Catalysts on the One-pot Synthesis of Tetrahydropyridines Derivatives: A Mini-Review. Orbital: The Electron. J. Chem., 13(4), 335–349.
[30]. Verma, A. K., Attri, P., Chopra, V., Tiwari, R. K., & Chandra, R. (2008). Triethylammonium acetate (TEAA): A recyclable inexpensive ionic liquid promotes the chemoselective aza- and thia-Michael reactions.
Monatsh. Chem., 139(9), 1041–1047.
[31]. Radomir J. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56, 532-53.
[32]. Agnieszka K., Radomir J., (2017). A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations. J. Chem. Inf. Comput. Sci.11(4), 37-42.
[33] Huang, Z.; Hu, Y.; Zhou, Y.; Shi, D. (2011) Efficient One-Pot Three-Component Synthesis of Fused Pyridine Derivatives in Ionic Liquid. ACS Comb. Sci., 13, 45– 49.
[2]. Jeschke P. (2004). The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem., 5(5), 571-589.
[3]. Balaskar, R., Gavade, S., Mane, M., Pabrekar, P., Shingare, M., & Mane, D. (2011). Triethylammonium Acetate [TEAA]: An Efficient Catalyst for One Pot Synthesis of Tetrahydro-4H-chromene Derivatives. Lett. Org. Chem., 8(4), 282–286.
[4]. Bhat, N. S., Mal, S. S., & Dutta, S. (2022). [Et3NH] [HSO4] as an efficient and inexpensive ionic liquid catalyst for the scalable preparation of biorenewable chemicals. Biomass Convers. Biorefin., 12(12), 5619–5625.
[5]. Brandt-Talbot, A., Gschwend, F. J. V., Fennell, P. S., Lammens, T. M., Tan, B., Weale, J., & Hallett, J. P. (2017). An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem., 19(13), 3078–3102.
[6]. Adam, B. (2023). Nucleophilic aromatic substitution of fluoroarenes to synthesise drug compounds for combatting neglected tropical diseases. LoughboroughUniversity.Thesis.
[7]. Chen, L., Sharifzadeh, M., Mac Dowell, N., Welton, T., Shah, N., & Hallett, J. P. (2014). Inexpensive ionic liquids: [HSO 4 ] − -based solvent production at bulk scale. Green Chem., 16(6), 3098–3106.
[8]. Davanagere, P. M., De, M., Chanda, K., & Maiti, B. (2023). Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organo catalyst. Catal., 13(1), 209-221.
[9]. Eshghi, H., Khojastehnezhad, A., Moeinpour, F., Bakavoli, M., Seyedi, S. M., & Abbasi, M. (2014). Synthesis, characterization and first application of keggin-type heteropoly acids supported on silica coated NiFe2O 4 as novel magnetically catalysts for the synthesis of tetrahydropyridines. RSC Adv., 4(75), 39782-39789.
[10]. Kim, J.G., Kang, O.Y., Kim, S.M., Issabayeva, G., Oh, I.S., Lee, Y.S , Lee, W.H., Lim H.J., Park, S.J. (2020). Synthesis and Properties of Pentafluorosulfanyl Group (SF5)-Containing Meta-Diamide Insecticides. Molecules. 25(12). 5536-5551.
[11]. Favi, G. (2020). Modern Strategies for Heterocycle Synthesis. Molecules, 25(11), 2476-2489.
[12]. Jadhav, C., Nipate, A., Chate, A., & Gill, C. (2021). Triethylammonium Hydrogen Sulfate [Et 3 NH][HSO 4 ]-Catalyzed Rapid and Efficient Multicomponent Synthesis of Pyrido[2,3- d ]pyrimidine and Pyrazolo[3,4- b ]pyridine Hybrids. ACS Omega, 6(28), 18215–18225.
[13]. Jeddi, B., Saberi, S., Menéndez, J. C., & Sepehri, S. (2022). Synthesis and Biological Evaluation of Tetrahydropyrimidine and Dihydropyridine Derivatives Against Leishmania Major. Acta Parasitologica, 67(1), 255–266.
[14]. Kale, S. R., & Surve, S. K. (2021). One-pot multicomponent synthesis of highly substituted pyridines using hydrotalcite as a solid base and reusable catalyst. Curr. Chem. Lett., 169–174.
[15]. Kamal, A., Babu, K. S., Vishnu Vardhan, M. V. P. S., Hussaini, S. M. A., Mahesh, R., Shaik, S. P., & Alarifi, A. (2015). Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles. ACS Med. Chem. Lett. 2017, 8( 12), 1331–1335
[16]. Khan, S. A., Asiri, A. M., Kumar, S., & Sharma, K. (2014). Green synthesis, antibacterial activity and computational study of pyrazoline and pyrimidine derivatives from 3-(3,4-dimethoxy-phenyl-1-(2,5-dimethyl-thiophen-3-yl)-propenone. Eur. J. Chem., 5(1), 85–90.
[17]. Ma, X., & Zhang, W. (2022). Recent developments in one-pot stepwise synthesis(OPSS) of small molecules. iScience, 25(9), 105005-105012.
[18]. Machado, I. V., Dos Santos, J. R. N., Januario, M. A. P., & Corrêa, A. G. (2021). Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason. Sonochem.,78,105704-105711.
[19]. Mali, A. S., Potnis, C. S., & Chaturbhuj, G. U. (2018). Aluminized polyborate: A novel catalyst for the multicomponent solvent-free synthesis of alkyl 1,2,6-trisubstituted-4-[(hetero)arylamino]-1,2,5,6-tetrahydropyridine-3-carboxylates. J. Iran. Chem. Soc., 15(6), 1399–1409.
[20]. M’hamed, M. O., & Khezami, L. (2019). 1,2,3,4-Tetrahydropyrimidine Derivative for Selective and Fast Uptake of Cadmium Ions from Aqueous Solution. Environments, 6(6),68-81.
[21]. Pasuparthy, S. D., & Maiti, B. (2022). [CMMIM][BF 4– ] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno[4,3- d ]pyrido[1,2- a ]pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS Omega, 7(43), 39147–39158.
[22]. Insuasty, D., Castillo, J., Becerra, D., Rojas, H., & Abonia, R. (2020). Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules , 25(3), 505-523.
[23]. Ramin, G.-V., & Hajar, S. (2013). Highly efficient one-pot synthesis of tetrahydropyridines. C. R. Chimi., 16(11), 1047–1054.
[24]. Sagmeister, P., Kaldre, D., Sedelmeier, J., Moessner, C., Püntener, K., Kummli, D., Williams, J. D., & Kappe, C. O. (2021). Intensified Continuous Flow Synthesis and Workup of 1,5-Disubstituted Tetrazoles Enhanced by Real-Time Process Analytics. Org. Proc. Res. Dev., 25(5), 1206–1214.
[25]. Sarkate, A., Sangshetti, J. N., Dharbale, N. B., Sarkate, A. P., & Shinde, D. B. (2015). Sulfamic acid catalyzed five component reaction for efficient and one-pot synthesis of densely functionalized tetrahydropyridine scaffold J. Chil. Chem. Soc., 60 (1), 2832–2836.
[26]. Rostamizadeh, S. & Sadeghi, K. (2002). One-Pot Synthesis of 1,2,4-Triazines. Synth. Commun., 32. 1899-1902.
[27]. Shmukler, L. E., Gruzdev, M. S., Kudryakova, N. O., Fadeeva, Y. A., Kolker, A. M., & Safonova, L. P. (2018). Triethylammonium-based protic ionic liquids with sulfonic acids: Phase behavior and electrochemistry. J. Mol. Liq., 266, 139–146.
[28]. Singh, P., Yadav, P., Mishra, A., & Awasthi, S. K. (2020). Green and Mechanochemical One-Pot Multicomponent Synthesis of Bioactive 2-amino-4 H -benzo[ b ]pyrans via Highly Efficient Amine-Functionalized SiO2@Fe3O4 Nanoparticles. ACS Omega, 5(8), 4223–4232.
[29]. Verma, A., Bharti, R., & Sharma, R. (2021). Effect of Methods and Catalysts on the One-pot Synthesis of Tetrahydropyridines Derivatives: A Mini-Review. Orbital: The Electron. J. Chem., 13(4), 335–349.
[30]. Verma, A. K., Attri, P., Chopra, V., Tiwari, R. K., & Chandra, R. (2008). Triethylammonium acetate (TEAA): A recyclable inexpensive ionic liquid promotes the chemoselective aza- and thia-Michael reactions.
Monatsh. Chem., 139(9), 1041–1047.
[31]. Radomir J. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56, 532-53.
[32]. Agnieszka K., Radomir J., (2017). A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations. J. Chem. Inf. Comput. Sci.11(4), 37-42.
[33] Huang, Z.; Hu, Y.; Zhou, Y.; Shi, D. (2011) Efficient One-Pot Three-Component Synthesis of Fused Pyridine Derivatives in Ionic Liquid. ACS Comb. Sci., 13, 45– 49.