How to cite this paper
Mokal, R & Jadhavar, S. (2024). Ionic liquid mediated efficient synthesis of 2,4,5-triarylimidazoles via green economical multicomponent reaction.Current Chemistry Letters, 13(3), 483-490.
Refrences
1) Raheem A. A., and Saleh A. T. (2021) Multicomponent reactions synthesis of triaryl-1H imidazoles using reductive-oxidative reactions by MnO2-FeSO4 as a catalyst. JCHR, 11(2), 223-226.
2) Sonar J., Pardeshi S., Dokhe S., Pawar R., Kharat K., Zine A., Matsagar B., Wu K., and Thore S. (2019) An efficient method for the synthesis of 2,4,5-trisubstituted imidazoles using lactic acid as promoter. SN Appl. Sci., 1, 1045.
3) Sadowski M., Synkiewicz-Musialska B., and Kula K. (2024) (1E, 3E)-1,4-Dinitro-1,3-butadiene-Synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation., Molecules, 29(2), 542.
4) Sadowskia M., and Kula K. (2024) Nitro-functionalized analogues of 1,3-butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett., 13, 15-30.
5) Kula K., Nagatsky R., Sadowski M., Siumka Y., and Demchuk O. M. (2023) Arylcyanomethylenequinone oximes: An overview of synthesis, chemical transformations, and biological activity. Molecules, 28(13), 5229.
6) Mishra R., and Ganguly S. (2012) Imidazole as an anti-epileptic: an overview. Med. Chem. Res., 21(12), 3929-3939.
7) Trommenschlager A., Chotard F., Bertrand B., Amor S., Dondaine L., Picquet M., Richard P., Bettaieb A., Gendre P.L., Paul C., Goze C., and Bodio E. (2017) Gold(i)–BODIPY–imidazole bimetallic complexes as new potential anti-inflammatory and anticancer trackable agents. Dalton Trans., 46(25), 8051-8056.
8) Gebre S. H. (2021) Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach. Synth. Commun., 51(11), 1669-1699.
9) Al Munsur A. Z., Roy H. N., and Imon M. K. (2020) Highly efficient and metal-free synthesis of tri-and tetrasubstituted imidazole catalyzed by 3-picolinic acid. Arabian J. Chem. 13(12), 8807-8814.
10) Gong K. K., Tang X. L., Liu Y. S., Li P. L., and Li G. Q. (2016) Imidazole alkaloids from the South China Sea sponge pericharax heteroraphis and their cytotoxic and antiviral activities. Molecules 21(2), 150-157.
11) Ali I., Lone M. N., and Aboul-Enein H. Y. (2017) Imidazoles as potential anticancer agents. Med. Chem. Commun. 8(9), 1742–1773.
12) Aghahosseini H., Ramazani A., Ślepokura K., and Lis T. (2018) The first protection-free synthesis of magnetic bifunctional l-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. J. Colloid Interface Sci., 511, 222-232.
13) Hajizadeh Z., Radinekiyan F., Eivazzadeh-Keihan R., and Maleki A. (2020) Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci. Rep., 10, 11671, 1-11.
14) Masteri-Farahani M., Ezabadi A., Mazarei R., Ataeinia P., Shahsavarifar S., and Mousavi F. (2020) A new nanocomposite catalyst based on clay-supported heteropolyacid for the green synthesis of 2,4,5-trisubstituted imidazoles. Appl. Organomet. Chem., 34, e5727.
15) Maleki A., Rahimi J., and Valadi K. (2019) Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst. Nano-Struct. Nano-Objects, 18, 100264.
16) Kumar V., Mamgain R., and Singh N. (2012) Synthesis of substituted imidazoles via a multi-component condensation catalyzed by p-toluene sulfonic acid, PTSA. Res. J. Chem. Sci., 2, 18-23.
17) Khan K., and Siddiqui Z. N. (2015) An efficient synthesis of tri- and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind. Eng. Chem. Res., 54, 6611-6618.
18) Saghanezhad S. J., Sayahi M. H., Imanifar I., Mombeni M., and Hamood S. D. (2017) Caffeine-H3PO4: a novel acidic catalyst for various one-pot multicomponent reactions. Res. Chem. Intermed., 43, 6521-6536.
19) Kanaani E., and Esfahani M. N. (2018) Citrate trisulfonic acid: A heterogeneous organocatalyst for the synthesis of highly substituted imidazoles. J. Chin. Chem. Soc., 66, 119-125.
20) Shaabani A., and Rahmati A. (2006). Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J. Mol. Catal. A., 249, 246-248.
21) Zamani L., Mirjalili B. B. F., and Namazian M. (2013) One-pot synthesis of 2,4,5-trisubstituted-1H-imidazoles promoted by nano-TiCl4.SiO2: An experimental and theoretical study. Chemija, 24, 312–319.
22) Das Sharma S., Hazarika P., and Konwar D. (2008) An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3.3H2O. Tetrahedron Lett., 49, 2216-2220.
23) Tambe A., Gadhave A., Pathare A., and Shirole G. (2021) Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm., 22, 100485.
24) Kermanizadeh S., Naeimi H., and Mousavi S. (2023) An efficient and eco-compatible multicomponent synthesis of 2,4,5-trisubstituted imidazole derivatives using modified-silica-coated cobalt ferrite nanoparticles with tungstic acid. Dalton Trans., 52, 1257-1267.
25) Ngugyen T. T., Le, N. P. T., Nguyen, T. T., and Tran, P. H., (2019) An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Adv., 9, 38148-38153.
26) Arpanahi F., and Goodajdar B. M. (2020) Iron–phosphonate nanomaterial: as a novel and efficient organic–inorganic hybrid catalyst for solvent-free synthesis of tri-substituted imidazole derivatives. J. Inorg. Organomet. Polym. Mater., 30, 2572-2581.
27) Varzi Z., Esmaeili M. S., Taheri-Ledari R., and Maleki A. (2021) Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 125, 108465.
28) Chinta B., Satyadev T. N. V. S. S.., and Adilakshmi G. V. (2023) Zn(OAc)2.2H2O-catalyzed one-pot synthesis of divergently substituted Imidazoles, Curr. Chem. Lett., 12, 175–184.
29) Mirjalili B. F., Bamonirib A., and Mohaghegh N. (2013) One-pot synthesis of 2,4,5-tri-substituted-1H-imidazoles promoted by trichloromelamine. Curr. Chem. Lett., 2, 35–42.
30) Kras J., Sadowski M., Zawadzińska K., Nagatsky R., Woliński P., Kula K., and Łapczuk A., (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. SciRad, 2(3), 247-267.
31) Shirole G. D., and Shelke S.N. (2016) Ionic Liquid: An efficient and facile catalyst for the synthesis of trisubstituted imidazole derivatives via multi-component pathway using green techniques. Lett. Org. Chem., 13, 742-748.
32) Alinezhad H., Tajbakhsh M., Maleki B., and Oushi F. P. (2020) Acidic ionic liquid [H-NP]HSO4 promoted one-pot synthesis of dihydro-1H-indeno[1,2-b]pyridines and polysubstituted imidazoles. Polycycl. Aromat. Compd., 40, 1485-1500.
33) Shirole G. D. (2021) Ionic liquid mediated one pot synthesis of 2,4,5-triarylimidazoles from 1,3-diaryl pyrazole carbaldehydes under solvent-free condition. Het. Lett., 11(3) 387-392.
34) Deng X., Zhou Z., Zhang A., and Xie G. (2013) Brønsted acid ionic liquid [Et3NH][HSO4] as an efficient and reusable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles. Res. Chem. Intermed., 39, 1101-1108.
35) Banothu J., Gali R., Velpula R., and Bavantula R. (2013) Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arabian J. Chem., 10(2), S2754-S2761.
36) Khosropour, A. R., (2008) Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by [Hmim]HSO4 as a powerful brönsted acidic ionic liquid. Can. J. Chem., 86, 264-269.
37) Hilal D. A., and Hanoon H. D. (2020) Bronsted acidic ionic liquid catalyzed an eco-friendly and efficient procedure for synthesis of 2,4,5-trisubstituted imidazole derivatives under ultrasound irradiation and optimal conditions. Res. Chem. Intermed., 46, 1521-1538.
38) Tan J., Li J. R., and Hu Y. L. (2020) Novel and efficient multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liquids for reusable synthesis of 2,4,5-trisubstituted imidazoles. J. Saudi. Chem. Soc., 24, 777-784.
2) Sonar J., Pardeshi S., Dokhe S., Pawar R., Kharat K., Zine A., Matsagar B., Wu K., and Thore S. (2019) An efficient method for the synthesis of 2,4,5-trisubstituted imidazoles using lactic acid as promoter. SN Appl. Sci., 1, 1045.
3) Sadowski M., Synkiewicz-Musialska B., and Kula K. (2024) (1E, 3E)-1,4-Dinitro-1,3-butadiene-Synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation., Molecules, 29(2), 542.
4) Sadowskia M., and Kula K. (2024) Nitro-functionalized analogues of 1,3-butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett., 13, 15-30.
5) Kula K., Nagatsky R., Sadowski M., Siumka Y., and Demchuk O. M. (2023) Arylcyanomethylenequinone oximes: An overview of synthesis, chemical transformations, and biological activity. Molecules, 28(13), 5229.
6) Mishra R., and Ganguly S. (2012) Imidazole as an anti-epileptic: an overview. Med. Chem. Res., 21(12), 3929-3939.
7) Trommenschlager A., Chotard F., Bertrand B., Amor S., Dondaine L., Picquet M., Richard P., Bettaieb A., Gendre P.L., Paul C., Goze C., and Bodio E. (2017) Gold(i)–BODIPY–imidazole bimetallic complexes as new potential anti-inflammatory and anticancer trackable agents. Dalton Trans., 46(25), 8051-8056.
8) Gebre S. H. (2021) Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach. Synth. Commun., 51(11), 1669-1699.
9) Al Munsur A. Z., Roy H. N., and Imon M. K. (2020) Highly efficient and metal-free synthesis of tri-and tetrasubstituted imidazole catalyzed by 3-picolinic acid. Arabian J. Chem. 13(12), 8807-8814.
10) Gong K. K., Tang X. L., Liu Y. S., Li P. L., and Li G. Q. (2016) Imidazole alkaloids from the South China Sea sponge pericharax heteroraphis and their cytotoxic and antiviral activities. Molecules 21(2), 150-157.
11) Ali I., Lone M. N., and Aboul-Enein H. Y. (2017) Imidazoles as potential anticancer agents. Med. Chem. Commun. 8(9), 1742–1773.
12) Aghahosseini H., Ramazani A., Ślepokura K., and Lis T. (2018) The first protection-free synthesis of magnetic bifunctional l-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. J. Colloid Interface Sci., 511, 222-232.
13) Hajizadeh Z., Radinekiyan F., Eivazzadeh-Keihan R., and Maleki A. (2020) Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci. Rep., 10, 11671, 1-11.
14) Masteri-Farahani M., Ezabadi A., Mazarei R., Ataeinia P., Shahsavarifar S., and Mousavi F. (2020) A new nanocomposite catalyst based on clay-supported heteropolyacid for the green synthesis of 2,4,5-trisubstituted imidazoles. Appl. Organomet. Chem., 34, e5727.
15) Maleki A., Rahimi J., and Valadi K. (2019) Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst. Nano-Struct. Nano-Objects, 18, 100264.
16) Kumar V., Mamgain R., and Singh N. (2012) Synthesis of substituted imidazoles via a multi-component condensation catalyzed by p-toluene sulfonic acid, PTSA. Res. J. Chem. Sci., 2, 18-23.
17) Khan K., and Siddiqui Z. N. (2015) An efficient synthesis of tri- and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind. Eng. Chem. Res., 54, 6611-6618.
18) Saghanezhad S. J., Sayahi M. H., Imanifar I., Mombeni M., and Hamood S. D. (2017) Caffeine-H3PO4: a novel acidic catalyst for various one-pot multicomponent reactions. Res. Chem. Intermed., 43, 6521-6536.
19) Kanaani E., and Esfahani M. N. (2018) Citrate trisulfonic acid: A heterogeneous organocatalyst for the synthesis of highly substituted imidazoles. J. Chin. Chem. Soc., 66, 119-125.
20) Shaabani A., and Rahmati A. (2006). Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J. Mol. Catal. A., 249, 246-248.
21) Zamani L., Mirjalili B. B. F., and Namazian M. (2013) One-pot synthesis of 2,4,5-trisubstituted-1H-imidazoles promoted by nano-TiCl4.SiO2: An experimental and theoretical study. Chemija, 24, 312–319.
22) Das Sharma S., Hazarika P., and Konwar D. (2008) An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3.3H2O. Tetrahedron Lett., 49, 2216-2220.
23) Tambe A., Gadhave A., Pathare A., and Shirole G. (2021) Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm., 22, 100485.
24) Kermanizadeh S., Naeimi H., and Mousavi S. (2023) An efficient and eco-compatible multicomponent synthesis of 2,4,5-trisubstituted imidazole derivatives using modified-silica-coated cobalt ferrite nanoparticles with tungstic acid. Dalton Trans., 52, 1257-1267.
25) Ngugyen T. T., Le, N. P. T., Nguyen, T. T., and Tran, P. H., (2019) An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Adv., 9, 38148-38153.
26) Arpanahi F., and Goodajdar B. M. (2020) Iron–phosphonate nanomaterial: as a novel and efficient organic–inorganic hybrid catalyst for solvent-free synthesis of tri-substituted imidazole derivatives. J. Inorg. Organomet. Polym. Mater., 30, 2572-2581.
27) Varzi Z., Esmaeili M. S., Taheri-Ledari R., and Maleki A. (2021) Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 125, 108465.
28) Chinta B., Satyadev T. N. V. S. S.., and Adilakshmi G. V. (2023) Zn(OAc)2.2H2O-catalyzed one-pot synthesis of divergently substituted Imidazoles, Curr. Chem. Lett., 12, 175–184.
29) Mirjalili B. F., Bamonirib A., and Mohaghegh N. (2013) One-pot synthesis of 2,4,5-tri-substituted-1H-imidazoles promoted by trichloromelamine. Curr. Chem. Lett., 2, 35–42.
30) Kras J., Sadowski M., Zawadzińska K., Nagatsky R., Woliński P., Kula K., and Łapczuk A., (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. SciRad, 2(3), 247-267.
31) Shirole G. D., and Shelke S.N. (2016) Ionic Liquid: An efficient and facile catalyst for the synthesis of trisubstituted imidazole derivatives via multi-component pathway using green techniques. Lett. Org. Chem., 13, 742-748.
32) Alinezhad H., Tajbakhsh M., Maleki B., and Oushi F. P. (2020) Acidic ionic liquid [H-NP]HSO4 promoted one-pot synthesis of dihydro-1H-indeno[1,2-b]pyridines and polysubstituted imidazoles. Polycycl. Aromat. Compd., 40, 1485-1500.
33) Shirole G. D. (2021) Ionic liquid mediated one pot synthesis of 2,4,5-triarylimidazoles from 1,3-diaryl pyrazole carbaldehydes under solvent-free condition. Het. Lett., 11(3) 387-392.
34) Deng X., Zhou Z., Zhang A., and Xie G. (2013) Brønsted acid ionic liquid [Et3NH][HSO4] as an efficient and reusable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles. Res. Chem. Intermed., 39, 1101-1108.
35) Banothu J., Gali R., Velpula R., and Bavantula R. (2013) Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arabian J. Chem., 10(2), S2754-S2761.
36) Khosropour, A. R., (2008) Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by [Hmim]HSO4 as a powerful brönsted acidic ionic liquid. Can. J. Chem., 86, 264-269.
37) Hilal D. A., and Hanoon H. D. (2020) Bronsted acidic ionic liquid catalyzed an eco-friendly and efficient procedure for synthesis of 2,4,5-trisubstituted imidazole derivatives under ultrasound irradiation and optimal conditions. Res. Chem. Intermed., 46, 1521-1538.
38) Tan J., Li J. R., and Hu Y. L. (2020) Novel and efficient multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liquids for reusable synthesis of 2,4,5-trisubstituted imidazoles. J. Saudi. Chem. Soc., 24, 777-784.