How to cite this paper
Okojie, R., Ikhuoria, E., Uwidiab, I., Ifijen, I & Chikaodili, I. (2024). Psidium guajava extract-mediated iron, vanadium, and silver ternary oxide nanoparticles for sustainable antibacterial applications.Current Chemistry Letters, 13(3), 515-530.
Refrences
1. (a) Chlebda, D. K., Stachurska, P., Jędrzejczyk, R. J., Kuterasiński, Ł., Dziedzicka, A., Górecka, S., Chmielarz, L., Łojewska, J., Sitarz, M., & Jodłowski, P. J. (2018). DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. Nanomater., 8(1), 21. https://doi.org/10.3390/nano8010021. (b) Gulumbe, B. H., & Abdulrahim, A. (2023). Pushing the frontiers in the fight against antimicrobial resistance: the potential of fecal and maggot therapies. Future Sci OA., 9(10), FSO899. doi: 10.2144/fsoa-2023-0089.
2. (a) Iskandar, K., Murugaiyan, J., Hammoudi Halat, D., Hage, S. E., Chibabhai, V., Adukkadukkam, S., Roques, C., Molinier, L., Salameh, P., & Van Dongen, M. (2022). Antibiotic Discovery and Resistance: The Chase and the Race. Antibiot., 11, 182. https://doi.org/10.3390/antibiotics11020182. (b) Jędrzejczyk, R. J., Turnau, K., Jodłowski, P. J., Chlebda, D. K., Łojewski, T., & Łojewska, J. (2017). Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomater., 7(9), 240. https://doi.org/10.3390/nano7090240.
3. Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 4(3), 482-501. https://doi.org/10.3934/microbiol.2018.3.482.
4. Osazee, F. O., Mokobia, K. E., & Ifijen, I. H. (2023). The Urgent Need for Tungsten-Based Nanoparticles as Antibacterial Agents. Biomed Mater Dev., https://doi.org/10.1007/s44174-023-00127-3.
5. Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: A Peer-Reviewed J Formulary Mgt., 40(4), 277-283.
6. Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, 12, 3077. https://doi.org/10.3390/plants12173077.
7. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11, 1946. https://doi.org/10.3390/healthcare111319.
8. Ifijen, I. H., Atoe, B., Ekun, R. O., et al. (2023). Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with Selenium Nanoparticles. BioNanoSci., 13, 249–277. https://doi.org/10.1007/s12668-023-01059-4.
9. Udokpoh, N. U., Jacob, J. N., Archibong, U. D., Onaiwu, G. E., & Ifijen, I. H. (2023). Utilizations of Graphene-Based Nanomaterials for the Detection and Treatment of Mycobacterium Tuberculosis. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_5.
10. Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. Int J Microbiol., 2013, 746165. https://doi.org/10.1155/2013/746165.
11. Daswani, P. G., Gholkar, M. S., & Birdi, T. J. (2017). Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacognosy Rev., 11(22), 167-174. https://doi.org/10.4103/phrev.phrev_17_17.
12. Naseer, S., Hussain, S., Naeem, N., et al. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytosci., 4, 32. https://doi.org/10.1186/s40816-018-0093-8.
13. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. B., Ifijen, I. H., Chikaodili, I. D., & Fatiqin, A. (2023). Advancing Green Nanotechnology: Harnessing the Bio-reducing Properties of Musa Paradisiaca Peel Extract for Sustainable Synthesis of Iron Oxide Nanoparticles, Journal of Multidisciplinary Applied Nat Sci., In press. https://doi.org/10.47352/jmans.2774-3047.194.
14. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Anegbe, B., Jonathan, E.M., Chikaodili, D.I. (2023). Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz J Chem Eng., https://doi.org/10.1007/s43153-023-00315-0.
15. Maliki, M., Ifijen, I.H., Ikhuoria, E.U. et al. (2022). Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int Nanotechnol Letters. 12: 379–398.
16. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Otabor, G.O., Aigbodion, A.I., Ibrahim, S.D. (2023). A Review of P(St-MMA-AA) synthesis via emulsion polymerization, 3D P(St-MMA-AA) photonic crystal fabrication, and photonic application. In: TMS 2023152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_30.
17. Ikhuoria, E.U., Omorogbe, S.O., Sone, B.T., Maaza, M. (2018). Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci Technol Mater., 30(2) 92-90.
18. Omorogbe, S.O., Aigbodion, A.I., Ifijen, H.I., Simo, A., Ogbeide-Ihama, N.L., Ikhuoria, E.U. (2020). Low-temperature synthesis of superparamagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifiers. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_58.
19. Omorogbe, S. O., Ikhuoria, E.U., Igiehon, L. I., Agbonlahor, G.O., Ifijen, I. H., Aigbodion, A.I. (2017). Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nig J Mater Sci Eng., 7(2): 23-31.
20. Ifijen, I.H., Udokpoh, N.U., Maliki, M., Ikhuoria, E.U., Obazee, E.O. (2023). A review of nanovanadium compounds for cancer cell therapy. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_59.
21. Mokobia, K.E., Ifijen, I.H., Ikhuoria, E.U. (2023). ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_27.
22. Ifijen, I.H., Maliki, M., Odiachi, I.J., Omoruyi, I.C., Aigbodion, A.I., Ikhuoria, E.U. (2022). Performance of metallic-based nanomaterials doped with strontium in biomedical and supercapacitor electrodes: A review. Biomed Mater Dev., 1 (1), 402-418. https://doi.org/10.1007/s44174-022-00006-3.
23. Abebe, B., Murthy, H. C. A., Zerefa, E., & Adimasu, Y. (2020). PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: synthesis, optimization, and evaluation of antibacterial activity. Mater Res Exp., 7, 045011.
24. Uwidia, I. E., Ikhuoria, E. U., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Synthesis of Ternary Oxide Nanoparticles of Iron, Silver, and Vanadium from Blended Extracts for Potential Tuberculosis Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 118). The Min Met Mater Ser., https://doi.org/10.1007/978-3-031-50349-8_118.
25. Okojie, R. O., Ikhuoria, E. U., Uwidia, I. E., Ifijen, I. H., & Chikaodili, I. D. (2024). Phytochemical-Mediated Green Synthesis of Silver Oxide Nanoparticles for Potential Cholera Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser., https://doi.org/10.1007/978-3-031-50349-8_115.
26. Uwidia, I. E., Ikhuoria, E. U., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Antibacterial Properties of Rod Like Vanadium Oxide Nanostructures via Ganoderma lucidum Plant Extract Approach. Chem Afri., https://doi.org/10.1007/s42250-023-00854-6.
27. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. O., Ifijen, I. H., Chikaodili, I. D., & Fatiqin, A. (2023). Advancing green nanotechnology: harnessing the bio-reducing properties of Musa paradisiaca peel extract for sustainable synthesis of iron oxide nanoparticles. J Multidisciplinary Applied Nat Sci., https://doi.org/10.47352/jmans.2774-3047.194.
28. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Prospects of Utilizing Environmentally Friendly Iron Oxide Nanoparticles Synthesized from Musa Paradisiaca Extract for Potential COVID-19 Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser. https://doi.org/10.1007/978-3-031-50349-8_116.
29. Matur, M., Madhyastha, H., Shruthi, T., Madhyastha, R., Srinivas, S., Navya, P., & Daima, H. (2020). Engineering bioactive surfaces on nanoparticles and their biological interactions. Scientific Rep., 10. https://doi.org/10.1038/s41598-020-75465-z.
30. Moldovan, B., Sincari, V., Perde-Schrepler, M., & David, L. (2018). Biosynthesis of Silver Nanoparticles Using Ligustrum Ovalifolium Fruits and Their Cytotoxic Effects. Nanomater., 8. https://doi.org/10.3390/nano8080627.
31. Taher, M., Mennatallah, E., Tadros, L., & Sanad, M. (2020). The effects of new formulations based on Gum Arabic on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. J Food Measurement Char., 14, 2489 - 2502. https://doi.org/10.1007/s11694-020-00496-z.
32. Niraimathee, V. A., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sus Dev., 15(3), 227-240.
33. Barbosa, G. N. a, Graeff, C. F. O. b, & Oliveira, H. P. a. (2005). Thermal annealing effects on vanadium pentoxide xerogel films. Eclét Quím., 30(2), 7-15. Retrieved from www.scielo.br/eq.
34. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanosci., 6, 399–408. https://doi.org/10.1007/s13204-015-0449-z.
35. Yusuf, A., Almotairy, A.R.Z., Henidi, H., Alshehri, O.Y., & Aldughaim, M.S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym., 15, 1596. https://doi.org/10.3390/polym15071596.
36. Chandrakala, V., Aruna, V., & Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater., 5(6), 1593-1615. doi: 10.1007/s42247-021-00335-x.
37. Murthy, S. K. (2007). Nanoparticles in modern medicine: state of the art and future challenges. International Journal of Nanomedicine, 2(2), 129-141.
38. Mitchell, M. J., Billingsley, M. M., Haley, R. M., et al. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discover, 20, 101–124. https://doi.org/10.1038/s41573-020-0090-8.
39. Farahmandjou, M., & Abaeiyan, N. (2017). Chemical Synthesis of Vanadium Oxide (V2O5) Nanoparticles Prepared by Sodium Metavanadate. J Nanomed Res., 5(1), 00103. DOI: 10.15406/jnmr.2017.05.00103.
40. Liu, X., Zheng, J., Jing, X., Cheng, Y., & Meng, C. (2020). One-Pot Synthesis and Characterization of VO2(B) with a Large Voltage Window Electrochemical Performance in Aqueous Solution. Appl Sci., 10, 2742. https://doi.org/10.3390/app10082742.
41. Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U., & Kumer, A. (2023). Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega, 8(31), 28133-28142. doi: 10.1021/acsomega.3c01261.
42. Jeung, D.-G., Lee, M., Paek, S.-M., & Oh, J.-M. (2021). Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide. Nanomater., 11, 455. https://doi.org/10.3390/nano11020455.
43. Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus Mediated Synthesis of Silver Oxide Nanoparticles. Nanomater Nanotechnol., 2, 15:2012.
44. Karthik, L., Kumar, G., Kirthi, A. V., Rahuman, A. A., & Rao, K. V. B. (2014). Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosys Eng., 37(2), 261-267. DOI: 10.1007/s00449-013-0994-3.
45. Nisticò, R., Rivolo, P., & Giorgis, F. (2019). Tips and Tricks for the Surface Engineering of Well-Ordered Morphologically Driven Silver-Based Nanomaterials. ChemOpen, 8(4), 508-519. doi: 10.1002/open.201900007.
46. Sajanlal, P. R., Sreeprasad, T. S., Samal, A. K., & Pradeep, T. (2011). Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev., 2. doi: 10.3402/nano.v2i0.5883.
47. Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother., 109, 1100–1111. doi:10.1016/j.biopha.2018.10.167.
48. Linklater, D., Baulin, V., Guével, X., Fleury, J., Hanssen, E., Nguyen, T., Juodkazis, S., Bryant, G., Crawford, R., Stoodley, P., & Ivanova, E. (2020). Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Adv Mater., 32. https://doi.org/10.1002/adma.202005679.
49. Alonzo, F., & Torres, V. (2014). The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiol Molecular Biol Rev., 78, 199 - 230. https://doi.org/10.1128/MMBR.00055-13.
50. Roiter, Y., Ornatska, M., Rammohan, A., Balakrishnan, J., Heine, D., & Minko, S. (2008). Interaction of nanoparticles with lipid membrane. Nano lett., 8 3, 941-4. https://doi.org/10.1021/nl080080l.
51. Fangary, S., Abdel-Halim, M., Fathalla, R., Hassan, R., Farag, N., Engel, M., Mansour, S., & Tammam, S. (2022). Nanoparticle Fraught Liposomes: A Platform for Increased Antibiotic Selectivity in Multidrug Resistant Bacteria. Mole pharm., https://doi.org/10.1021/acs.molpharmaceut.2c00258.
52. Amako, K., Meno, Y., & Takade, A. (1988). Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol., 170, 4960 - 4962. https://doi.org/10.1128/jb.170.10.4960-4962.1988.
53. Hornstra, L. M., de Vries, Y. P., Wells-Bennik, M. H., de Vos, W. M., & Abee, T. (2006). Characterization of germination receptors of Bacillus cereus ATCC 14579. Appl Environ Microbiol., 72(1), 44-53. https://doi.org/10.1128/AEM.72.1.44-53.2006.
54. Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M., Gerthsen, D., & Ulrich, A. (2010). Damage of the Bacterial Cell Envelope by Antimicrobial Peptides Gramicidin S and PGLa as Revealed by Transmission and Scanning Electron Microscopy. Antimicrob Agents Chemother., 54, 3132 - 3142. https://doi.org/10.1128/AAC.00124-10.
55. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano, 6 6, 5164-73. https://doi.org/10.1021/nn300934k.
56. Deplanche, M., Mouhali, N., Nguyen, M., Cauty, C., Ezan, F., Diot, A., Raulin, L., Dutertre, S., Langouet, S., Legembre, P., Taieb, F., Otto, M., Laurent, F., Götz, F., Loir, Y., & Berkova, N. (2019). Staphylococcus aureus induces DNA damage in host cell. Sci Rep., 9. https://doi.org/10.1038/s41598-019-44213-3.
57. Schieber, M., & Chandel, N. (2014). ROS Function in Redox Signaling and Oxidative Stress. Curr Biol., 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034.
58. Wu, J., Chu, Z., Ruan, Z., Wang, X., Dai, T., & Hu, X. (2018). Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light. Front Physiol., 9. https://doi.org/10.3389/fphys.2018.01658.
59. Samrot, A. V., & Noel Richard Prakash, L. X. (2023). Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life, 13(3), 767. https://doi.org/10.3390/life13030767
60. Martindale, J., & Holbrook, N. (2002). Cellular response to oxidative stress: Signalling for suicide and survival. J Cellular Physiol., 192. https://doi.org/10.1002/jcp.10119.
61. Hamida, R., Ali, M., Goda, D., Khalil, M., & Redhwan, A. (2020). Cytotoxic effect of green silver nanoparticles against ampicillin resistant Klebsiella pneumoniae. RSC Advan., 10, 21136 - 21146. https://doi.org/10.1039/d0ra03580g.
62. Zuber, P. (2009). Management of oxidative stress in Bacillus. Annual revf microbiol., 63, 575-97. https://doi.org/10.1146/annurev.micro.091208.073241.
63. Rahmah, M., Saadoon, N., Mohasen, A., Kamel, R., Fayad, T., & Ibrahim, N. (2021). Double hydrothermal synthesis of iron oxide/silver oxide nanocomposites with antibacterial activity. J Mech Behaviour Mater., 30, 207 - 212. https://doi.org/10.1515/jmbm-2021-0021.
64. Singh, R., & Ramarao, P. (2012). Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol lett., 213 2, 249-59. https://doi.org/10.1016/j.toxlet.2012.07.009.
65. Long, Y., Hu, L., Yan, X., Zhao, X., Zhou, Q., Cai, Y., & Jiang, G. (2017). Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomed., 12, 3193 - 3206. https://doi.org/10.2147/IJN.S132327.
66. Nagy, A., Harrison, A., Sabbani, S., Munson, R., Dutta, P., & Waldman, W. (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed., 6, 1833 - 1852. https://doi.org/10.2147/IJN.S24019.
67. Abdel-Aziz, M., Yosri, M., & Amin, B. (2017). Control of imipenem resistant-Klebsiella pneumoniae pulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. J Radiation Res Appl Sci., 10, 353 - 360. https://doi.org/10.1016/j.jrras.2017.09.002.
68. Bate, A., Bonneau, R., & Eichenberger, P. (2014). Bacillus subtilis Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol spec., 2 2. https://doi.org/10.1128/microbiolspec.TBS-0019-2013.
69. Gupta, A., Mumtaz, S., Li, C., Hussain, I., & Rotello, V. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc rev., 48 2, 415-427. https://doi.org/10.1039/c7cs00748e.
70. Mosquera, J., García, I., & Liz‐Marzán, L. (2018). Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acct Chem Res., 51 9, 2305-2313. https://doi.org/10.1021/acs.accounts.8b00292.
71. Treuel, L., Jiang, X., & Nienhaus, G. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. J Royal Soc Interf., 10. https://doi.org/10.1098/rsif.2012.0939.
72. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int Nanomed., 12, 1227 - 1249. https://doi.org/10.2147/IJN.S121956.
73. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M., Alkawareek, M., Dreaden, E., Brown, D., Alkilany, A., Farokhzad, O., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem Soc rev., 46 14, 4218-4244. https://doi.org/10.1039/c6cs00636a.
74. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano, 6 6, 5164-73. https://doi.org/10.1021/nn300934k.
75. Kumar, H., Bhardwaj, K., Nepovimova, E., Kuča, K., Dhanjal, D., Bhardwaj, S., Bhatia, S., Verma, R., & Kumar, D. (2020). Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomater, 10. https://doi.org/10.3390/nano10071334.
76. Nel, A., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat mater., 8 7, 543-57. https://doi.org/10.1038/nmat2442.
77. Prakash, S., Kumbhojkar, N., Clegg, J., & Mitragotri, S. (2020). Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opinion in Colloid and Interf Sci., 101408. https://doi.org/10.1016/j.cocis.2020.101408.
78. Kim, Y., Jung, K., Chang, J., Kwak, T., Lim, Y., Kim, S., Na, J., Lee, J., Choi, I., Lee, L., Kim, D., & Kang, T. (2019). Active Surface Hydrophobicity Switching and Dynamic Interfacial Trapping of Microbial Cells by Metal Nanoparticles for Preconcentration and In-plane Optical Detection. Nano lett., https://doi.org/10.1021/acs.nanolett.9b03163.
79. Knetsch, M., & Koole, L. (2011). New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polym., 3, 340-366. https://doi.org/10.3390/POLYM3010340.
80. Tsang, P., Li, G., Brun, Y., Freund, L., & Tang, J. (2006). Adhesion of single bacterial cells in the micronewton range. Proc Nat Acad Sc USA., 103 15, 5764-8. https://doi.org/10.1073/PNAS.0601705103.
81. Nguyen, P., Botyanszki, Z., Tay, P., & Joshi, N. (2014). Programmable biofilm-based materials from engineered curli nanofibres. Nat Comm., 5. https://doi.org/10.1038/ncomms5945.
82. Muhammad, M., Idris, A., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., & Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol., 11. https://doi.org/10.3389/fmicb.2020.00928.
83. Brasil, M., Filgueiras, A., Campos, M., Neves, M., Eugênio, M., Sena, L., Sant’Anna, C., Silva, V., Diniz, C., & Sant’Ana, A. (2018). Synergism in the Antibacterial Action of Ternary Mixtures Involving Silver Nanoparticles, Chitosan and Antibiotics. J Braz Chem Soc., 29, 2026-2033. https://doi.org/10.21577/0103-5053.20180077.
84. Godoy-Gallardo, M., Eckhard, U., Delgado, L., Puente, Y., Hoyos-Nogués, M., Gil, F., & Pérez, R. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Mater., 6, 4470 - 4490. https://doi.org/10.1016/j.bioactmat.2021.04.033.
85. Nizami, M., Xu, V., Yin, I., Yu, O., & Chu, C. (2021). Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review. Nanomater., 11. https://doi.org/10.3390/nano11123446.
86. Ahmad, S., Das, S., Khatoon, A., Ansari, M., Afzal, M., Hasnain, S., & Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Sci Energy Technol., 3, 756-769. https://doi.org/10.1016/J.MSET.2020.09.002.
87. Blokhina, O., Virolainen, E., & Fagerstedt, K. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals bot., 91 Spec No, 179-94. https://doi.org/10.1093/AOB/MCF118.
88. Evangelou, A. (2002). Vanadium in cancer treatment. Critical reviews in oncol/hematol., 42 3, 249-65. https://doi.org/10.1016/S1040-8428(01)00221-9.
2. (a) Iskandar, K., Murugaiyan, J., Hammoudi Halat, D., Hage, S. E., Chibabhai, V., Adukkadukkam, S., Roques, C., Molinier, L., Salameh, P., & Van Dongen, M. (2022). Antibiotic Discovery and Resistance: The Chase and the Race. Antibiot., 11, 182. https://doi.org/10.3390/antibiotics11020182. (b) Jędrzejczyk, R. J., Turnau, K., Jodłowski, P. J., Chlebda, D. K., Łojewski, T., & Łojewska, J. (2017). Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomater., 7(9), 240. https://doi.org/10.3390/nano7090240.
3. Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 4(3), 482-501. https://doi.org/10.3934/microbiol.2018.3.482.
4. Osazee, F. O., Mokobia, K. E., & Ifijen, I. H. (2023). The Urgent Need for Tungsten-Based Nanoparticles as Antibacterial Agents. Biomed Mater Dev., https://doi.org/10.1007/s44174-023-00127-3.
5. Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: A Peer-Reviewed J Formulary Mgt., 40(4), 277-283.
6. Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, 12, 3077. https://doi.org/10.3390/plants12173077.
7. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11, 1946. https://doi.org/10.3390/healthcare111319.
8. Ifijen, I. H., Atoe, B., Ekun, R. O., et al. (2023). Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with Selenium Nanoparticles. BioNanoSci., 13, 249–277. https://doi.org/10.1007/s12668-023-01059-4.
9. Udokpoh, N. U., Jacob, J. N., Archibong, U. D., Onaiwu, G. E., & Ifijen, I. H. (2023). Utilizations of Graphene-Based Nanomaterials for the Detection and Treatment of Mycobacterium Tuberculosis. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_5.
10. Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. Int J Microbiol., 2013, 746165. https://doi.org/10.1155/2013/746165.
11. Daswani, P. G., Gholkar, M. S., & Birdi, T. J. (2017). Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacognosy Rev., 11(22), 167-174. https://doi.org/10.4103/phrev.phrev_17_17.
12. Naseer, S., Hussain, S., Naeem, N., et al. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytosci., 4, 32. https://doi.org/10.1186/s40816-018-0093-8.
13. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. B., Ifijen, I. H., Chikaodili, I. D., & Fatiqin, A. (2023). Advancing Green Nanotechnology: Harnessing the Bio-reducing Properties of Musa Paradisiaca Peel Extract for Sustainable Synthesis of Iron Oxide Nanoparticles, Journal of Multidisciplinary Applied Nat Sci., In press. https://doi.org/10.47352/jmans.2774-3047.194.
14. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Anegbe, B., Jonathan, E.M., Chikaodili, D.I. (2023). Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz J Chem Eng., https://doi.org/10.1007/s43153-023-00315-0.
15. Maliki, M., Ifijen, I.H., Ikhuoria, E.U. et al. (2022). Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int Nanotechnol Letters. 12: 379–398.
16. Ifijen, I.H., Ikhuoria, E.U., Omorogbe, S.O., Otabor, G.O., Aigbodion, A.I., Ibrahim, S.D. (2023). A Review of P(St-MMA-AA) synthesis via emulsion polymerization, 3D P(St-MMA-AA) photonic crystal fabrication, and photonic application. In: TMS 2023152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_30.
17. Ikhuoria, E.U., Omorogbe, S.O., Sone, B.T., Maaza, M. (2018). Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci Technol Mater., 30(2) 92-90.
18. Omorogbe, S.O., Aigbodion, A.I., Ifijen, H.I., Simo, A., Ogbeide-Ihama, N.L., Ikhuoria, E.U. (2020). Low-temperature synthesis of superparamagnetic Fe3O4 morphologies tuned using oleic acid as crystal growth modifiers. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_58.
19. Omorogbe, S. O., Ikhuoria, E.U., Igiehon, L. I., Agbonlahor, G.O., Ifijen, I. H., Aigbodion, A.I. (2017). Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties. Nig J Mater Sci Eng., 7(2): 23-31.
20. Ifijen, I.H., Udokpoh, N.U., Maliki, M., Ikhuoria, E.U., Obazee, E.O. (2023). A review of nanovanadium compounds for cancer cell therapy. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_59.
21. Mokobia, K.E., Ifijen, I.H., Ikhuoria, E.U. (2023). ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2023. The Min, Met Mater Ser., Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_27.
22. Ifijen, I.H., Maliki, M., Odiachi, I.J., Omoruyi, I.C., Aigbodion, A.I., Ikhuoria, E.U. (2022). Performance of metallic-based nanomaterials doped with strontium in biomedical and supercapacitor electrodes: A review. Biomed Mater Dev., 1 (1), 402-418. https://doi.org/10.1007/s44174-022-00006-3.
23. Abebe, B., Murthy, H. C. A., Zerefa, E., & Adimasu, Y. (2020). PVA assisted ZnO based mesoporous ternary metal oxides nanomaterials: synthesis, optimization, and evaluation of antibacterial activity. Mater Res Exp., 7, 045011.
24. Uwidia, I. E., Ikhuoria, E. U., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Synthesis of Ternary Oxide Nanoparticles of Iron, Silver, and Vanadium from Blended Extracts for Potential Tuberculosis Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 118). The Min Met Mater Ser., https://doi.org/10.1007/978-3-031-50349-8_118.
25. Okojie, R. O., Ikhuoria, E. U., Uwidia, I. E., Ifijen, I. H., & Chikaodili, I. D. (2024). Phytochemical-Mediated Green Synthesis of Silver Oxide Nanoparticles for Potential Cholera Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser., https://doi.org/10.1007/978-3-031-50349-8_115.
26. Uwidia, I. E., Ikhuoria, E. U., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Antibacterial Properties of Rod Like Vanadium Oxide Nanostructures via Ganoderma lucidum Plant Extract Approach. Chem Afri., https://doi.org/10.1007/s42250-023-00854-6.
27. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. O., Ifijen, I. H., Chikaodili, I. D., & Fatiqin, A. (2023). Advancing green nanotechnology: harnessing the bio-reducing properties of Musa paradisiaca peel extract for sustainable synthesis of iron oxide nanoparticles. J Multidisciplinary Applied Nat Sci., https://doi.org/10.47352/jmans.2774-3047.194.
28. Ikhuoria, E. U., Uwidia, I. E., Okojie, R. O., Ifijen, I. H., & Chikaodili, I. D. (2024). Prospects of Utilizing Environmentally Friendly Iron Oxide Nanoparticles Synthesized from Musa Paradisiaca Extract for Potential COVID-19 Treatment. In The Minerals, Metals & Materials Society (Ed.), TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Min Met Mater Ser. https://doi.org/10.1007/978-3-031-50349-8_116.
29. Matur, M., Madhyastha, H., Shruthi, T., Madhyastha, R., Srinivas, S., Navya, P., & Daima, H. (2020). Engineering bioactive surfaces on nanoparticles and their biological interactions. Scientific Rep., 10. https://doi.org/10.1038/s41598-020-75465-z.
30. Moldovan, B., Sincari, V., Perde-Schrepler, M., & David, L. (2018). Biosynthesis of Silver Nanoparticles Using Ligustrum Ovalifolium Fruits and Their Cytotoxic Effects. Nanomater., 8. https://doi.org/10.3390/nano8080627.
31. Taher, M., Mennatallah, E., Tadros, L., & Sanad, M. (2020). The effects of new formulations based on Gum Arabic on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. J Food Measurement Char., 14, 2489 - 2502. https://doi.org/10.1007/s11694-020-00496-z.
32. Niraimathee, V. A., Subha, V., Ernest Ravindran, R. S., & Renganathan, S. (2016). Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sus Dev., 15(3), 227-240.
33. Barbosa, G. N. a, Graeff, C. F. O. b, & Oliveira, H. P. a. (2005). Thermal annealing effects on vanadium pentoxide xerogel films. Eclét Quím., 30(2), 7-15. Retrieved from www.scielo.br/eq.
34. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanosci., 6, 399–408. https://doi.org/10.1007/s13204-015-0449-z.
35. Yusuf, A., Almotairy, A.R.Z., Henidi, H., Alshehri, O.Y., & Aldughaim, M.S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym., 15, 1596. https://doi.org/10.3390/polym15071596.
36. Chandrakala, V., Aruna, V., & Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater., 5(6), 1593-1615. doi: 10.1007/s42247-021-00335-x.
37. Murthy, S. K. (2007). Nanoparticles in modern medicine: state of the art and future challenges. International Journal of Nanomedicine, 2(2), 129-141.
38. Mitchell, M. J., Billingsley, M. M., Haley, R. M., et al. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discover, 20, 101–124. https://doi.org/10.1038/s41573-020-0090-8.
39. Farahmandjou, M., & Abaeiyan, N. (2017). Chemical Synthesis of Vanadium Oxide (V2O5) Nanoparticles Prepared by Sodium Metavanadate. J Nanomed Res., 5(1), 00103. DOI: 10.15406/jnmr.2017.05.00103.
40. Liu, X., Zheng, J., Jing, X., Cheng, Y., & Meng, C. (2020). One-Pot Synthesis and Characterization of VO2(B) with a Large Voltage Window Electrochemical Performance in Aqueous Solution. Appl Sci., 10, 2742. https://doi.org/10.3390/app10082742.
41. Ali, M. H., Azad, M. A. K., Khan, K. A., Rahman, M. O., Chakma, U., & Kumer, A. (2023). Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega, 8(31), 28133-28142. doi: 10.1021/acsomega.3c01261.
42. Jeung, D.-G., Lee, M., Paek, S.-M., & Oh, J.-M. (2021). Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide. Nanomater., 11, 455. https://doi.org/10.3390/nano11020455.
43. Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus Mediated Synthesis of Silver Oxide Nanoparticles. Nanomater Nanotechnol., 2, 15:2012.
44. Karthik, L., Kumar, G., Kirthi, A. V., Rahuman, A. A., & Rao, K. V. B. (2014). Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosys Eng., 37(2), 261-267. DOI: 10.1007/s00449-013-0994-3.
45. Nisticò, R., Rivolo, P., & Giorgis, F. (2019). Tips and Tricks for the Surface Engineering of Well-Ordered Morphologically Driven Silver-Based Nanomaterials. ChemOpen, 8(4), 508-519. doi: 10.1002/open.201900007.
46. Sajanlal, P. R., Sreeprasad, T. S., Samal, A. K., & Pradeep, T. (2011). Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev., 2. doi: 10.3402/nano.v2i0.5883.
47. Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother., 109, 1100–1111. doi:10.1016/j.biopha.2018.10.167.
48. Linklater, D., Baulin, V., Guével, X., Fleury, J., Hanssen, E., Nguyen, T., Juodkazis, S., Bryant, G., Crawford, R., Stoodley, P., & Ivanova, E. (2020). Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Adv Mater., 32. https://doi.org/10.1002/adma.202005679.
49. Alonzo, F., & Torres, V. (2014). The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiol Molecular Biol Rev., 78, 199 - 230. https://doi.org/10.1128/MMBR.00055-13.
50. Roiter, Y., Ornatska, M., Rammohan, A., Balakrishnan, J., Heine, D., & Minko, S. (2008). Interaction of nanoparticles with lipid membrane. Nano lett., 8 3, 941-4. https://doi.org/10.1021/nl080080l.
51. Fangary, S., Abdel-Halim, M., Fathalla, R., Hassan, R., Farag, N., Engel, M., Mansour, S., & Tammam, S. (2022). Nanoparticle Fraught Liposomes: A Platform for Increased Antibiotic Selectivity in Multidrug Resistant Bacteria. Mole pharm., https://doi.org/10.1021/acs.molpharmaceut.2c00258.
52. Amako, K., Meno, Y., & Takade, A. (1988). Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol., 170, 4960 - 4962. https://doi.org/10.1128/jb.170.10.4960-4962.1988.
53. Hornstra, L. M., de Vries, Y. P., Wells-Bennik, M. H., de Vos, W. M., & Abee, T. (2006). Characterization of germination receptors of Bacillus cereus ATCC 14579. Appl Environ Microbiol., 72(1), 44-53. https://doi.org/10.1128/AEM.72.1.44-53.2006.
54. Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M., Gerthsen, D., & Ulrich, A. (2010). Damage of the Bacterial Cell Envelope by Antimicrobial Peptides Gramicidin S and PGLa as Revealed by Transmission and Scanning Electron Microscopy. Antimicrob Agents Chemother., 54, 3132 - 3142. https://doi.org/10.1128/AAC.00124-10.
55. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano, 6 6, 5164-73. https://doi.org/10.1021/nn300934k.
56. Deplanche, M., Mouhali, N., Nguyen, M., Cauty, C., Ezan, F., Diot, A., Raulin, L., Dutertre, S., Langouet, S., Legembre, P., Taieb, F., Otto, M., Laurent, F., Götz, F., Loir, Y., & Berkova, N. (2019). Staphylococcus aureus induces DNA damage in host cell. Sci Rep., 9. https://doi.org/10.1038/s41598-019-44213-3.
57. Schieber, M., & Chandel, N. (2014). ROS Function in Redox Signaling and Oxidative Stress. Curr Biol., 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034.
58. Wu, J., Chu, Z., Ruan, Z., Wang, X., Dai, T., & Hu, X. (2018). Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light. Front Physiol., 9. https://doi.org/10.3389/fphys.2018.01658.
59. Samrot, A. V., & Noel Richard Prakash, L. X. (2023). Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life, 13(3), 767. https://doi.org/10.3390/life13030767
60. Martindale, J., & Holbrook, N. (2002). Cellular response to oxidative stress: Signalling for suicide and survival. J Cellular Physiol., 192. https://doi.org/10.1002/jcp.10119.
61. Hamida, R., Ali, M., Goda, D., Khalil, M., & Redhwan, A. (2020). Cytotoxic effect of green silver nanoparticles against ampicillin resistant Klebsiella pneumoniae. RSC Advan., 10, 21136 - 21146. https://doi.org/10.1039/d0ra03580g.
62. Zuber, P. (2009). Management of oxidative stress in Bacillus. Annual revf microbiol., 63, 575-97. https://doi.org/10.1146/annurev.micro.091208.073241.
63. Rahmah, M., Saadoon, N., Mohasen, A., Kamel, R., Fayad, T., & Ibrahim, N. (2021). Double hydrothermal synthesis of iron oxide/silver oxide nanocomposites with antibacterial activity. J Mech Behaviour Mater., 30, 207 - 212. https://doi.org/10.1515/jmbm-2021-0021.
64. Singh, R., & Ramarao, P. (2012). Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol lett., 213 2, 249-59. https://doi.org/10.1016/j.toxlet.2012.07.009.
65. Long, Y., Hu, L., Yan, X., Zhao, X., Zhou, Q., Cai, Y., & Jiang, G. (2017). Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomed., 12, 3193 - 3206. https://doi.org/10.2147/IJN.S132327.
66. Nagy, A., Harrison, A., Sabbani, S., Munson, R., Dutta, P., & Waldman, W. (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed., 6, 1833 - 1852. https://doi.org/10.2147/IJN.S24019.
67. Abdel-Aziz, M., Yosri, M., & Amin, B. (2017). Control of imipenem resistant-Klebsiella pneumoniae pulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. J Radiation Res Appl Sci., 10, 353 - 360. https://doi.org/10.1016/j.jrras.2017.09.002.
68. Bate, A., Bonneau, R., & Eichenberger, P. (2014). Bacillus subtilis Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol spec., 2 2. https://doi.org/10.1128/microbiolspec.TBS-0019-2013.
69. Gupta, A., Mumtaz, S., Li, C., Hussain, I., & Rotello, V. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc rev., 48 2, 415-427. https://doi.org/10.1039/c7cs00748e.
70. Mosquera, J., García, I., & Liz‐Marzán, L. (2018). Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acct Chem Res., 51 9, 2305-2313. https://doi.org/10.1021/acs.accounts.8b00292.
71. Treuel, L., Jiang, X., & Nienhaus, G. (2013). New views on cellular uptake and trafficking of manufactured nanoparticles. J Royal Soc Interf., 10. https://doi.org/10.1098/rsif.2012.0939.
72. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int Nanomed., 12, 1227 - 1249. https://doi.org/10.2147/IJN.S121956.
73. Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M., Alkawareek, M., Dreaden, E., Brown, D., Alkilany, A., Farokhzad, O., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem Soc rev., 46 14, 4218-4244. https://doi.org/10.1039/c6cs00636a.
74. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS nano, 6 6, 5164-73. https://doi.org/10.1021/nn300934k.
75. Kumar, H., Bhardwaj, K., Nepovimova, E., Kuča, K., Dhanjal, D., Bhardwaj, S., Bhatia, S., Verma, R., & Kumar, D. (2020). Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomater, 10. https://doi.org/10.3390/nano10071334.
76. Nel, A., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat mater., 8 7, 543-57. https://doi.org/10.1038/nmat2442.
77. Prakash, S., Kumbhojkar, N., Clegg, J., & Mitragotri, S. (2020). Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opinion in Colloid and Interf Sci., 101408. https://doi.org/10.1016/j.cocis.2020.101408.
78. Kim, Y., Jung, K., Chang, J., Kwak, T., Lim, Y., Kim, S., Na, J., Lee, J., Choi, I., Lee, L., Kim, D., & Kang, T. (2019). Active Surface Hydrophobicity Switching and Dynamic Interfacial Trapping of Microbial Cells by Metal Nanoparticles for Preconcentration and In-plane Optical Detection. Nano lett., https://doi.org/10.1021/acs.nanolett.9b03163.
79. Knetsch, M., & Koole, L. (2011). New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polym., 3, 340-366. https://doi.org/10.3390/POLYM3010340.
80. Tsang, P., Li, G., Brun, Y., Freund, L., & Tang, J. (2006). Adhesion of single bacterial cells in the micronewton range. Proc Nat Acad Sc USA., 103 15, 5764-8. https://doi.org/10.1073/PNAS.0601705103.
81. Nguyen, P., Botyanszki, Z., Tay, P., & Joshi, N. (2014). Programmable biofilm-based materials from engineered curli nanofibres. Nat Comm., 5. https://doi.org/10.1038/ncomms5945.
82. Muhammad, M., Idris, A., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., & Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol., 11. https://doi.org/10.3389/fmicb.2020.00928.
83. Brasil, M., Filgueiras, A., Campos, M., Neves, M., Eugênio, M., Sena, L., Sant’Anna, C., Silva, V., Diniz, C., & Sant’Ana, A. (2018). Synergism in the Antibacterial Action of Ternary Mixtures Involving Silver Nanoparticles, Chitosan and Antibiotics. J Braz Chem Soc., 29, 2026-2033. https://doi.org/10.21577/0103-5053.20180077.
84. Godoy-Gallardo, M., Eckhard, U., Delgado, L., Puente, Y., Hoyos-Nogués, M., Gil, F., & Pérez, R. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Mater., 6, 4470 - 4490. https://doi.org/10.1016/j.bioactmat.2021.04.033.
85. Nizami, M., Xu, V., Yin, I., Yu, O., & Chu, C. (2021). Metal and Metal Oxide Nanoparticles in Caries Prevention: A Review. Nanomater., 11. https://doi.org/10.3390/nano11123446.
86. Ahmad, S., Das, S., Khatoon, A., Ansari, M., Afzal, M., Hasnain, S., & Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Sci Energy Technol., 3, 756-769. https://doi.org/10.1016/J.MSET.2020.09.002.
87. Blokhina, O., Virolainen, E., & Fagerstedt, K. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals bot., 91 Spec No, 179-94. https://doi.org/10.1093/AOB/MCF118.
88. Evangelou, A. (2002). Vanadium in cancer treatment. Critical reviews in oncol/hematol., 42 3, 249-65. https://doi.org/10.1016/S1040-8428(01)00221-9.