How to cite this paper
Sebaiy, M., El-Adl, S., Nafea, A., Mattar, A., Abdul-Malik, M., Abdel-Raheem, S & Elbaramawi, S. (2024). Review: Instrumental analytical techniques for evaluating some anti-infective drugs in pharmaceutical products and biological fluids.Current Chemistry Letters, 13(3), 491-502.
Refrences
1. Sarmah P., Dan M. M., Adapa D., and Sarangi T. K. (2018) A review on common pathogenic microorganisms and their impact on human health. Electronic Journal of Biology, 14 (1) 50-58.
2. Nasim R., Tisha J. F., and Dewan S. M. R. (2023) Only COVID‐19 and not all infectious diseases are of concern: A timely observation. Health Sci. Rep., 6 (9) e1589.
3. Gandhi L., Maisnam D., Rathore D., Chauhan P., Bonagiri A., and Venkataramana M. (2022) Respiratory illness virus infections with special emphasis on COVID-19. Eur. J. Med. Res., 27 (1) 1-21.
4. Hussain H. H., Ibraheem N. T., Al-Rubaey N. K. F., Radhi M. M., Hindi N. K. K., and AL-Jubori R. H. K. (2022) A review of airborne contaminated microorganisms associated with human diseases. Med. j. Babylon, 19 (2) 115-122.
5. Bourouiba L. (2021) Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Eng., 23 547-577.
6. Al-Halhouli A. A., Albagdady A., Alawadi J. F., and Abeeleh M. A. (2021) Monitoring symptoms of infectious diseases: Perspectives for printed wearable sensors. Micromachines, 12 (6) 620.
7. Carbone M., Lednicky J., Xiao S. Y., Venditti M., and Bucci E. (2021) Coronavirus 2019 infectious disease epidemic: where we are, what can be done and hope for. J. Thorac. Oncol., 16 (4) 546-571.
8. Aiello A. E., Coulborn R. M., Perez V., and Larson E. L. (2008) Effect of hand hygiene on infectious disease risk in the community setting: a meta-analysis. Am. J. Public Health, 98 (8) 1372-1381.
9. Gorbach S. L., Bartlett J. G., and Blacklow N. R. (2004) Infectious diseases. (Eds.), Lippincott Williams & Wilkins.
10. Malinowska M. A., Sharafan M., Lanoue A., Ferrier M., Hano C., Giglioli-Guivarc’h N., Dziki A., Sikora E., and Szopa A. (2023) Trans-resveratrol as a health beneficial molecule: activity, sources, and methods of analysis. Sci. Rad., 2 (3) 268-294.
11. Zawadzińska K., and Gostyński B. (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Sci. Rad., 2 25-46.
12. Powers J. H. (2004) Antimicrobial drug development–the past, the present, and the future. Clin. Microbiol. Infect., 10 23-31.
13. El Bakri Y., Mohamed S. K., Saravanan K., Ahmad S., Mahmoud A. A., Abdel-Raheem Sh. A. A., ElSayed W. M., Mague J. T., and Said S. G. (2023) 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, a natural product as a potential inhibitor of COVID-19: Extraction, crystal structure, and virtual screening approach. J. King Saud Univ. Sci., 35 (4) 102628.
14. Abd ul‐Malik M. A., Zaki R. M., Kamal El‐Dean A. M., and Radwan S. M. (2018) A concise review on the synthesis and reactions of pyrazolopyrazine heterocycles. J. Heterocycl. Chem., 55 (8) 1828-1853.
15. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Marae I. S., Bakhite E. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., Tolba M. S., Sayed A. S. A., and Abd-Ella A. A. (2022) Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev. Roum. Chem., 67 (4-5) 305-309.
16. Zaki R. M., Kamal El-Dean A. M., Radwan S. M., and Abd ul-Malik M. A. (2018) A convenient synthesis, reactions and biological activities of some novel thieno[3,2-e]pyrazolo[3,4-b]pyrazine compounds as anti-microbial and anti-inflammatory agents. Curr. Org. Syn., 15 (6) 863-871.
17. Zaki R. M., Abdul-Malik M. A., Saber S. H., Radwan S. M., and El-Dean A. M. K. (2020) A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents. Med. Chem. Res., 29 2130-2145.
18. Drar A. M., Abdel-Raheem Sh. A. A., Moustafa A. H., and Hussein B. R. M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr. Chem. Lett., 12 (3) 499-508.
19. Abdel-Raheem Sh. A. A., Drar A. M., Hussein B. R. M., and Moustafa A. H. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr. Chem. Lett., 12 (4) 695–704.
20. Ibrahim S. M., Abdelkhalek A. S., Abdel-Raheem Sh. A. A., Freah N. E., El Hady N. H., Aidia N. K., Tawfeq N. A., Gomaa N. I., Fouad N. M., Salem H. A., Ibrahim H. M., and Sebaiy M. M. (2024) An overview on 2-indolinone derivatives as anticancer agents. Curr. Chem. Lett., 13 (1) 241-254.
21. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., 78 (8) 846-850.
22. Szepesi G., and Nyiredy S. (1996) Pharmaceutical and drugs, In: J. Sherma, B. Fried (Eds.), Handbook of Thin-Layer Chromatography, 2nd ed., Marcel Dekker, New York, 208–235.
23. Siddiqui M. R., Tariq A., Reddy K. D., Chaudhary M., Yadav J., Negi P. S., Bhatnagar A., Singh R. (2010) High Performance Liquid Chromatographic Method for Simultaneous Determination of Cefepime and Sulbactam in Pharmaceutical Formulation and Biological Sample. Int. J. Pharmacol., 6 271– 277.
24. Tang J., Peng J., Zhang L., and Xiao X. (2012) High performance liquid chromatography (HPLC) method coupled with resonance Rayleigh scattering detection for the determination of isepamicin. Anal. Methods, 4 1833–1837.
25. Devika G. S., Sudhakar M., and Rao J. V. (2012) Isocratic RPHPLC method for simultaneous separation and estimation of zofenopril and hydrochlorthiazide in pharmaceutical dosage forms. J. Chem., 9 999–1006.
26. Ahmed M., Manohara Y. N., and Ravi M. C. (2012) RP-HPLC method development and validation for simultaneous estimation of atorvastatin calcium and amlodipine besylate. Int. J. Chemtech Res., 4 (1) 337-34.
27. Sharma P. C., Jain A., Jain S., Pahwa R., and Yar M. S. (2010) Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem., 25 (4) 577-589.
28. Abdel Ziz S. A., Abdel Motaal S., Abd-Allah O. E., and Sarhan M. M. (2016) Concurrent use of ciprofloxacin and metronidazole for controlling of some bacterial infections in broiler chickens. Benha Vet. Med. J., 31 (2) 83-92.
29. Kim S., Thiessen P. A., Bolton E. E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B. A., Wang J., Yu B., Zhang J., and Bryant S. H. (2015) Pubchem substance and compound databases. Nucleic Acids Res., 44 (D1) D1202-D1213.
30. Mostafa S., El-Sadek M., and Alla E. A. (2002) Spectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation. J. Pharm. Biomed. Anal., 27 (1-2) 133-142.
31. Pascual-Reguera M. I., Parras G. P., and Dı́az A. M. (2004) Solid-phase UV spectrophotometric method for determination of ciprofloxacin. Microchem. J., 77 (1) 79-84.
32. Ulu S. T. (2009) Spectrofluorimetric determination of fluoroquinolones in pharmaceutical preparations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 72 (1) 138-143.
33. El Walily A. F. M., Belal S. F., and Bakry R. S. (1996) Spectrophotometric and spectrofluorimetric estimation of ciprofloxacin and norfloxacin by ternary complex formation with eosin and palladium (II). J. Pharm. Biomed. Anal., 14 (5) 561-569.
34. Scherer R., Pereira J., Firme J., Lemos M., and Lemos M. (2014) Determination of ciprofloxacin in pharmaceutical formulations using hplc method with uv detection. Indian J. Pharm. Sci., 76 (6) 541-544.
35. Wu S. S., Chein C. Y., and Wen Y. H. (2008) Analysis of ciprofloxacin by a simple high-performance liquid chromatography method. J. Chromatogr. Sci., 46 (6) 490-495.
36. Qiang Z., and Adams C. (2004) Potentiometric determination of acid dissociation constants (pka) for human and veterinary antibiotics. Water Res., 38 (12) 2874-2890.
37. Wang L., Song X., Wang Q., Feng X., Xu R., Hang X. (2018) Determination of ciprofloxacin in milk by new magnetic molecular imprinting-high performance liquid chromatography. Journal of Food Safety and Quality, 9 (15) 3999-4005.
38. National Toxicology Program I. O. E. H. S., National Institutes of Health (Ntp). (1992) NTP Chem Rep Database RTP., North Carolina.
39. Ceruelos A. H., Romero-Quezada L., Ledezma J. R., and Contreras L. L. (2019) Therapeutic uses of metronidazole and its side effects: An update. Eur. Rev. Med. Pharmacol. Sci., 23 (1) 397-401.
40. Khalil N. A., Mahmoud H. S., and Shehab A. A. (2022) Spectrophotometric determination of metronidazole in pharmaceutical preparations and in human blood samples. Egypt. J. Chem., 65 (8) 397-405.
41. Shaheed D., Bader Q., and Abbas A. (2020) Spectrophotometric determination of metronidazole benzoate in pharmaceutical dosage forms. Int. J. Pharm. Res., 12 3526-3532.
42. Kras J., Wróblewska A., and Kącka-Zych A. (2023) Unusual regioselectivity in [3+ 2] cycloaddition reactions between (E)-3-nitroacrylic acid derivatives and (Z)-C, N-diphenylimine N-oxide. Sci. Rad., 2 (2) 112-117.
43. Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+ 2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules, 26 (22) 6774.
44. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+ 2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473.
45. Kras J., Sadowski M., Zawadzińska K., Nagatsky R., Woliński P., Kula K., and Łapczuk A. (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Rad., 2 (3) 247-267.
46. Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
47. Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the participation of fluorinated azomethine ylides in carbenoid-type [3+2] cycloaddition reactions with ynal systems: A molecular electron density theory study. J. Org. Chem., 86 (18) 12644-12653.
48. Żmigrodzka M., Sadowski M., Kras J., Dresler E., Demchuk O. M., and Kula K. (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad., 1 26-35.
49. Zawadzińska K., Gaurav G. K., and Jasiński R. (2022) Preparation of conjugated nitroalkenes: short review. Sci. Rad., 1 69-83.
50. Kula K., Nagatsky R., Sadowski M., Siumka Y., and Demchuk O. M. (2023) Arylcyanomethylenequinone oximes: An overview of synthesis, chemical transformations, and biological activity. Molecules, 28 (13) 5229.
51. Woliński P., Kącka-Zych A., Mirosław B., Wielgus E., Olszewska A., and Jasiński R. (2022) Green, one-pot synthesis of 1,2-oxazine-type herbicides via non-catalyzed Hetero Diels-Alder reactions comprising (2E)-3-aryl-2-nitroprop-2-enenitriles. J. Clean. Prod., 356 131878.
52. Hatamie A., Marahel F., and Sharifat A. (2018) Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta, 176 518-525.
53. Haghani S. K., Ensafi A. A., Kazemifard N., and Rezaei B. (2020) A sensitive and selective optical sensor based on molecularly imprinting technique using green synthesized carbon dots for determination of trace amount of metronidazole. IEEE Sens. J., 20 (21) 12530-12536.
54. Yang S., Wang L., Zuo L., Zhao C., Li H., and Ding L. (2019) Non-conjugated polymer carbon dots for fluorometric determination of metronidazole. Mikrochim. Acta, 186 1-9.
55. Sukumar V., Chanduluru H. K., and Chinnusamy S. (2023) Ecofriendly analytical quality by design-based method for determining metronidazole, lidocaine and miconazole using RP-HPLC in semisolid dosage form. J. Taibah Univ. Sci., 17 (1) 2252593.
56. Matmour D., Hassam K. F. E., Hamoum N., Merad Y., Ziani N. H., and Toumi H. (2023) Comparison of HPLC Method and Potentiometric Titration Technique for the Content Determination of Metronidazole API. RHAZES: Green Appl. Chem., 17 21-31.
57. Sadek S. A., Abbar R. S., Atia Z. A. M., Diaa L. M., Naif H. J., Jafar K. F., ... and Kareem G. (2020) "Comparative of Chemical Methods for Determination Metronidazole-A Review. Mustansiriyah University, college of pharmacy, department of pharmaceutical chemistry, 5th grade, second semester, report.
58. Attia K. A., Nassar M. W., El-Zeiny M. B., and Serag A. (2016) Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form. Spectrochim. Acta A Mol. Biomol. Spectrosc., 154 232-236.
59. Vega E., and Sola N. (2001) Quantitative analysis of metronidazole in intravenous admixture with ciprofloxacin by first derivative spectrophotometry. J. Pharm. Biomed. Anal., 25 (3-4) 523-530.
60. Patel N. V., and Prajapati A. M. (2012) Q-absorbance ratio spectrophotometric method for the simultaneous estimation of ciprofloxacin and metronidazole in their combined dosage form. JPSBR, 2 (3) 118-122.
61. Mahrouse M. A., and Elkady E. F. (2011) Validated spectrophotometric methods for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in tablets. Chem. Pharm. Bull., 59 (12) 1485-1493.
62. Mahrouse M. A. (2012) Development and validation of a uv spectrophotometric method for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in binary mixture. J. Chem. Pharm. Res., 4 (11) 4710-4715.
63. Obaydo R. H., and Sakur A. A. (2019) A green analytical method using algorithm (pcca) for extracting components’ contribution from severely overlapped spectral signals in pharmaceutical mixtures. Res. J. Pharm. Technol., 12 (9) 4332-4338.
64. Lotfy H., Obaydo R. H., and Sakur A. A. (2021) Evaluation of assay and in-vitro dissolution profile of certain fixed-dose combination using green analytical method. Ann. Pharm. Fr., 79 (1) 3-15.
65. Sakur A. A., and Obaydo R. H. (2020) Pcca algorithm as a fingerprint resolution technique for the analysis of ciprofloxacin in the presence of its acid induced degradation product. Res. J. Pharm. Technol., 13 (12) 5999-6006.
66. Gupta D., Bhardwaj S., Sethi S., Pramanik S., Das D. K., Kumar R., Singh P. P., and Vashistha V. K. (2022) Simultaneous spectrophotometric determination of drug components from their dosage formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 270 120819.
67. El-Ghobashy M. R., and Abo-Talib N. F. (2010) Spectrophotometric methods for the simultaneous determination of binary mixture of metronidazole and diloxanide furoate without prior separation. J. Adv. Res., 1 (4) 323-329.
68. Issa M. M., Shanab A. M. A., and Shaat N. T. (2013) Kinetic spectrophotometric h-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 114 592-598.
69. Obaydo R. H., and Alhaj Sakur A. (2019) Fingerprint spectrophotometric methods for the determination of co-formulated otic solution of ciprofloxacin and fluocinolone acetonide in their challengeable ratio. J. Anal. Methods Chem., 2019 8919345.
70. Navalon A., Ballesteros O., Blanc R., and Vı́Lchez J. L. (2000) Determination of ciprofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. Talanta, 52 (5) 845-852.
71. Sakira A. K., Corenthin M., De Braekeleer K., Delporte C., Yameogo J., Yabre M., Some T. I., Van Antwerpen P., Mertens D., and Kauffmann J. M. (2021) Determination of the quality of metronidazole formulations by near-infrared spectrophotometric analysis. Talanta Open, 3 100027.
72. Elkady E. F., and Mahrouse M. A. (2011) Reversed-phase ion-pair hplc and tlc-densitometric methods for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in tablets. Chromatographia, 73 (3) 297-305.
73. Hafeza H. M., Elshanawany A. A., Abdelaziz L. M., and Mohram M. S. (2015) Design of experiment utilization to develop a simple and robust rp-uplc technique for stability indicating method of ciprofloxacin hydrochloride and metronidazole in tablets. Eurasian J. Anal. Chem., 10 (2) 84-105.
74. Vega E., Dabbene V., Nassetta M., and Sola N. (1999) Validation of a reversed-phase lc method for quantitative analysis of intravenous admixtures of ciprofloxacin and metronidazole. J. Pharm. Biomed. Anal., 21 (5) 1003-1009.
75. Budiarti A., Gandjar I. G., and Rohman A. (2015) Liquid chromatography with uv detection for simultaneous determination of ciprofloxacin and metronidazole. J. Teknol., 72 (1) 45-47.
76. El-Bagary R., El-Zaher A. A., Elkady E., and Mandour A. A. (2016) Simultaneous determination of ciprofloxacin hydrochloride and metronidazole in spiked human plasma by ultra performance liquid chromatography-tandem mass spectroscopy. J. Appl. Pharm. Sci., 6 (3) 041-047.
77. Vella J., Busuttil F., Bartolo N. S., Sammut C., Ferrito V., Serracino-Inglott A., Azzopardi L. M., and Laferla G. (2015) A simple hplc–uv method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B., 989 80-85.
78. Imre S., Dogaru M. T., Vari C., Muntean T., and Kelemen L. (2003) Validation of an hplc method for the determination of ciprofloxacin in human plasma. J. Pharm. Biomed. Anal., 33 (1) 125-130.
79. Vybiralova Z., Nobilis M., Zoulova J., Květina J., and Petr P. (2005) High-performance liquid chromatographic determination of ciprofloxacin in plasma samples. J. Pharm. Biomed. Anal., 37 (5) 851-858.
80. Kamberi M., Tsutsumi K., Kotegawa T., Nakamura K., and Nakano S. (1998) Determination of ciprofloxacin in plasma and urine by hplc with ultraviolet detection. Clin. Chem., 44 (6) 1251-1255.
81. Sakur A. A., Dabbeet H. A., and Noureldin I. (2019) Novel drug selective sensors for simultaneous potentiometric determination of both ciprofloxacin and metronidazole in pure form and pharmaceutical formulations. Res. J. Pharm. Technol., 12 (7) 3377-3384.
82. Mollamahale Y. B., Ghorbani M., Ghalkhani M., Vossoughi M., and Dolati A. (2013) Highly sensitive 3d gold nanotube ensembles: Application to electrochemical determination of metronidazole. Electrochim. Acta, 106 288-292.
83. Mao A., Li H., Yu L., and Hu X. (2017) Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. J. Electroanal. Chem., 799 257-262.
84. Sinha N., and Balayla G. (2020) Hydroxychloroquine and covid-19. Postgrad. Med. J., 96 (1139) 550-555.
85. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., Labella A., Manson D. K., Kubin C., Barr R. G., Sobieszczyk M. E., and Schluger N. W. (2020) Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 382 (25) 2411-2418.
86. Chafai N., Benbouguerra K., Chafaa S., Hellal A. (2022) Quantum chemical study of hydroxychloroquine and chloroquine drugs used as a treatment of Covid-19. Iran. J. Chem. Chem. Eng., 41 (1) 27-36.
87. Ramzy S., Abdelazim A. H., Osman A. O., Hasan M. A. (2022) Spectrofluorimetric quantitative analysis of favipiravir, remdesivir and hydroxychloroquine in spiked human plasma. Spectrochim. Acta A Mol. Biomol. Spectrosc., 281 121625.
88. Bilgin Z. D., Evcil I., Yazgi D., Binay G., Okuyucu Genc C., Gulsen B., Huseynova A., Ozdemir A. Z., Ozmen E., Usta Y., Ustun S., and Caglar Andac S. (2021) Liquid chromatographic methods for Covid-19 drugs, hydroxychloroquine and chloroquine. J. Chromatogr. Sci., 59 (8) 748-757.
89. Pannu S., Akhtar M. J., and Kumar B. (2022) Analytical methodologies for determination of hydroxychloroquine and its metabolites in pharmaceutical, biological and environmental samples. Curr. Pharm. Anal., 18 (3) 273-290.
90. Wishart D. S., Guo A., Oler E., Wang F., Anjum A., Peters H., ... and Gautam V. (2022) HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res., 50 (D1) D622-D631.
91. Ayad M. M., Shalaby A. A., Abdellatef H. E., and Elsaid H. M. (1999) Spectrophotometric and atomic absorption spectrometric determination of certain cephalosporins. J. Pharm. Biomed. Anal., 18 (6) 975-983.
92. Abdel-Raheem Sh. A. A., Fouad M. R., Gad M. A., Kamal El-Dean A. M., and Tolba M. S. (2023) Environmentally Green Synthesis and Characterization of Some Novel Bioactive Pyrimidines with Excellent Bioefficacy and Safety Profile Towards Soil Organisms. J. Environ. Chem. Eng., 11 (5) 110839.
93. El-Ossaily Y. A., Alanazi N. M. M., Althobaiti I. O., Altaleb H. A., Al-Muailkel N. S., El-Sayed M. Y., Hussein M. F., Ahmed I. M., Alanazi M. M., Fawzy A., Abdel-Raheem Sh. A. A., and Tolba M. S. (2024) Multicomponent Approach to the Synthesis and Spectral Characterization of Some 3,5-Pyrazolididione Derivatives and Evaluation as Anti-inflammatory Agents. Curr. Chem. Lett., 13 (1) 127-140.
94. Ahmed A. A., Mohamed S. K., and Abdel-Raheem Sh. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 (4) 359-370.
95. Sebaiy M. M., El-Adl S. M., Elbaramawi S. S., Abdel-Raheem Sh. A. A., and Nafie A. (2024) Developing a highly validated and sensitive HPLC method for simultaneous estimation of cefotaxime and paracetamol in pure and pharmaceutical preparations. Curr. Chem. Lett., 13 (2) 435-444.
96. Yost R. L., and Derendorf H. (1985) Rapid chromatographic determination of cefotaxime and its metabolite in biological fluids. J. Chromatogr. B., 341 131-138.
97. Agüero J., Peris J. E., and San-Martín E. (1999) Validation of a high-performance chromatographic method for determination of cefotaxime in biological samples. Fresenius J. Anal. Chem., 363 289-293.
98. Al-Hakkani M. F. (2020) HPLC analytical method validation for determination of cefotaxime in the bulk and finished pharmaceutical dosage form. Sustain. Chem. Eng., 1 33-42.
99. Sharaf Y. A., Ibrahim A. E., El Deeb S., and Sayed R. A. (2023) Green chemometric determination of cefotaxime sodium in the presence of its degradation impurities using different multivariate data processing tools; gapi and agree greenness evaluation. Molecules, 28 (5) 2187.
100. Consortti L. P., and Salgado H. R. N. (2017) A critical review of analytical methods for quantification of cefotaxime. Crit. Rev. Anal. Chem., 47 (4) 359-371.
101. Saleh G. A., Badr I. H., El-Deen D. A. N., and Derayea S. M. (2019) Novel potentiometric sensor for the selective determination of cefotaxime sodium and its application to pharmaceutical analysis. IEEE Sens. J., 20 (7) 3415-3422.
102. Yue X., Xu X., Liu C., and Zhao S. (2022) Simultaneous determination of cefotaxime and nimesulide using poly (L-cysteine) and graphene composite modified glassy carbon electrode. Microchem. J., 174 107058.
103. Shahrokhian S., and Rastgar S. (2012) Construction of an electrochemical sensor based on the electrodeposition of Au–Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst, 137 (11) 2706-2715.
104. Bushra M. U., Akter N., Hassan M. R., Islam A., and Hossain M. R. (2014) Development and validation of a simple uv spectrophotometric method for the determination of cefotaxime sodium in bulk and pharmaceutical formulation. IOSR J. Pharm, 4 74-77.
105. Kzar T. T., Rasheed A. S., and Hassan M. J. (2021) Development of a validated hydrophilic interaction chromatography method for the determination of cefotaxime in pharmaceutical preparations. Egypt. J. Chem., 64 (6) 2967-2972.
2. Nasim R., Tisha J. F., and Dewan S. M. R. (2023) Only COVID‐19 and not all infectious diseases are of concern: A timely observation. Health Sci. Rep., 6 (9) e1589.
3. Gandhi L., Maisnam D., Rathore D., Chauhan P., Bonagiri A., and Venkataramana M. (2022) Respiratory illness virus infections with special emphasis on COVID-19. Eur. J. Med. Res., 27 (1) 1-21.
4. Hussain H. H., Ibraheem N. T., Al-Rubaey N. K. F., Radhi M. M., Hindi N. K. K., and AL-Jubori R. H. K. (2022) A review of airborne contaminated microorganisms associated with human diseases. Med. j. Babylon, 19 (2) 115-122.
5. Bourouiba L. (2021) Fluid dynamics of respiratory infectious diseases. Annu. Rev. Biomed. Eng., 23 547-577.
6. Al-Halhouli A. A., Albagdady A., Alawadi J. F., and Abeeleh M. A. (2021) Monitoring symptoms of infectious diseases: Perspectives for printed wearable sensors. Micromachines, 12 (6) 620.
7. Carbone M., Lednicky J., Xiao S. Y., Venditti M., and Bucci E. (2021) Coronavirus 2019 infectious disease epidemic: where we are, what can be done and hope for. J. Thorac. Oncol., 16 (4) 546-571.
8. Aiello A. E., Coulborn R. M., Perez V., and Larson E. L. (2008) Effect of hand hygiene on infectious disease risk in the community setting: a meta-analysis. Am. J. Public Health, 98 (8) 1372-1381.
9. Gorbach S. L., Bartlett J. G., and Blacklow N. R. (2004) Infectious diseases. (Eds.), Lippincott Williams & Wilkins.
10. Malinowska M. A., Sharafan M., Lanoue A., Ferrier M., Hano C., Giglioli-Guivarc’h N., Dziki A., Sikora E., and Szopa A. (2023) Trans-resveratrol as a health beneficial molecule: activity, sources, and methods of analysis. Sci. Rad., 2 (3) 268-294.
11. Zawadzińska K., and Gostyński B. (2023) Nitrosubstituted analogs of isoxazolines and isoxazolidines: a surprising estimation of their biological activity via molecular docking. Sci. Rad., 2 25-46.
12. Powers J. H. (2004) Antimicrobial drug development–the past, the present, and the future. Clin. Microbiol. Infect., 10 23-31.
13. El Bakri Y., Mohamed S. K., Saravanan K., Ahmad S., Mahmoud A. A., Abdel-Raheem Sh. A. A., ElSayed W. M., Mague J. T., and Said S. G. (2023) 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, a natural product as a potential inhibitor of COVID-19: Extraction, crystal structure, and virtual screening approach. J. King Saud Univ. Sci., 35 (4) 102628.
14. Abd ul‐Malik M. A., Zaki R. M., Kamal El‐Dean A. M., and Radwan S. M. (2018) A concise review on the synthesis and reactions of pyrazolopyrazine heterocycles. J. Heterocycl. Chem., 55 (8) 1828-1853.
15. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Marae I. S., Bakhite E. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., Tolba M. S., Sayed A. S. A., and Abd-Ella A. A. (2022) Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev. Roum. Chem., 67 (4-5) 305-309.
16. Zaki R. M., Kamal El-Dean A. M., Radwan S. M., and Abd ul-Malik M. A. (2018) A convenient synthesis, reactions and biological activities of some novel thieno[3,2-e]pyrazolo[3,4-b]pyrazine compounds as anti-microbial and anti-inflammatory agents. Curr. Org. Syn., 15 (6) 863-871.
17. Zaki R. M., Abdul-Malik M. A., Saber S. H., Radwan S. M., and El-Dean A. M. K. (2020) A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents. Med. Chem. Res., 29 2130-2145.
18. Drar A. M., Abdel-Raheem Sh. A. A., Moustafa A. H., and Hussein B. R. M. (2023) Studying the toxicity and structure-activity relationships of some synthesized polyfunctionalized pyrimidine compounds as potential insecticides. Curr. Chem. Lett., 12 (3) 499-508.
19. Abdel-Raheem Sh. A. A., Drar A. M., Hussein B. R. M., and Moustafa A. H. (2023) Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies. Curr. Chem. Lett., 12 (4) 695–704.
20. Ibrahim S. M., Abdelkhalek A. S., Abdel-Raheem Sh. A. A., Freah N. E., El Hady N. H., Aidia N. K., Tawfeq N. A., Gomaa N. I., Fouad N. M., Salem H. A., Ibrahim H. M., and Sebaiy M. M. (2024) An overview on 2-indolinone derivatives as anticancer agents. Curr. Chem. Lett., 13 (1) 241-254.
21. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., 78 (8) 846-850.
22. Szepesi G., and Nyiredy S. (1996) Pharmaceutical and drugs, In: J. Sherma, B. Fried (Eds.), Handbook of Thin-Layer Chromatography, 2nd ed., Marcel Dekker, New York, 208–235.
23. Siddiqui M. R., Tariq A., Reddy K. D., Chaudhary M., Yadav J., Negi P. S., Bhatnagar A., Singh R. (2010) High Performance Liquid Chromatographic Method for Simultaneous Determination of Cefepime and Sulbactam in Pharmaceutical Formulation and Biological Sample. Int. J. Pharmacol., 6 271– 277.
24. Tang J., Peng J., Zhang L., and Xiao X. (2012) High performance liquid chromatography (HPLC) method coupled with resonance Rayleigh scattering detection for the determination of isepamicin. Anal. Methods, 4 1833–1837.
25. Devika G. S., Sudhakar M., and Rao J. V. (2012) Isocratic RPHPLC method for simultaneous separation and estimation of zofenopril and hydrochlorthiazide in pharmaceutical dosage forms. J. Chem., 9 999–1006.
26. Ahmed M., Manohara Y. N., and Ravi M. C. (2012) RP-HPLC method development and validation for simultaneous estimation of atorvastatin calcium and amlodipine besylate. Int. J. Chemtech Res., 4 (1) 337-34.
27. Sharma P. C., Jain A., Jain S., Pahwa R., and Yar M. S. (2010) Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem., 25 (4) 577-589.
28. Abdel Ziz S. A., Abdel Motaal S., Abd-Allah O. E., and Sarhan M. M. (2016) Concurrent use of ciprofloxacin and metronidazole for controlling of some bacterial infections in broiler chickens. Benha Vet. Med. J., 31 (2) 83-92.
29. Kim S., Thiessen P. A., Bolton E. E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker B. A., Wang J., Yu B., Zhang J., and Bryant S. H. (2015) Pubchem substance and compound databases. Nucleic Acids Res., 44 (D1) D1202-D1213.
30. Mostafa S., El-Sadek M., and Alla E. A. (2002) Spectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation. J. Pharm. Biomed. Anal., 27 (1-2) 133-142.
31. Pascual-Reguera M. I., Parras G. P., and Dı́az A. M. (2004) Solid-phase UV spectrophotometric method for determination of ciprofloxacin. Microchem. J., 77 (1) 79-84.
32. Ulu S. T. (2009) Spectrofluorimetric determination of fluoroquinolones in pharmaceutical preparations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 72 (1) 138-143.
33. El Walily A. F. M., Belal S. F., and Bakry R. S. (1996) Spectrophotometric and spectrofluorimetric estimation of ciprofloxacin and norfloxacin by ternary complex formation with eosin and palladium (II). J. Pharm. Biomed. Anal., 14 (5) 561-569.
34. Scherer R., Pereira J., Firme J., Lemos M., and Lemos M. (2014) Determination of ciprofloxacin in pharmaceutical formulations using hplc method with uv detection. Indian J. Pharm. Sci., 76 (6) 541-544.
35. Wu S. S., Chein C. Y., and Wen Y. H. (2008) Analysis of ciprofloxacin by a simple high-performance liquid chromatography method. J. Chromatogr. Sci., 46 (6) 490-495.
36. Qiang Z., and Adams C. (2004) Potentiometric determination of acid dissociation constants (pka) for human and veterinary antibiotics. Water Res., 38 (12) 2874-2890.
37. Wang L., Song X., Wang Q., Feng X., Xu R., Hang X. (2018) Determination of ciprofloxacin in milk by new magnetic molecular imprinting-high performance liquid chromatography. Journal of Food Safety and Quality, 9 (15) 3999-4005.
38. National Toxicology Program I. O. E. H. S., National Institutes of Health (Ntp). (1992) NTP Chem Rep Database RTP., North Carolina.
39. Ceruelos A. H., Romero-Quezada L., Ledezma J. R., and Contreras L. L. (2019) Therapeutic uses of metronidazole and its side effects: An update. Eur. Rev. Med. Pharmacol. Sci., 23 (1) 397-401.
40. Khalil N. A., Mahmoud H. S., and Shehab A. A. (2022) Spectrophotometric determination of metronidazole in pharmaceutical preparations and in human blood samples. Egypt. J. Chem., 65 (8) 397-405.
41. Shaheed D., Bader Q., and Abbas A. (2020) Spectrophotometric determination of metronidazole benzoate in pharmaceutical dosage forms. Int. J. Pharm. Res., 12 3526-3532.
42. Kras J., Wróblewska A., and Kącka-Zych A. (2023) Unusual regioselectivity in [3+ 2] cycloaddition reactions between (E)-3-nitroacrylic acid derivatives and (Z)-C, N-diphenylimine N-oxide. Sci. Rad., 2 (2) 112-117.
43. Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+ 2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules, 26 (22) 6774.
44. Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O. M. (2020) [3+ 2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473.
45. Kras J., Sadowski M., Zawadzińska K., Nagatsky R., Woliński P., Kula K., and Łapczuk A. (2023) Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Rad., 2 (3) 247-267.
46. Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
47. Domingo L. R., Kula K., Rios-Gutierrez M., and Jasinski R. (2021) Understanding the participation of fluorinated azomethine ylides in carbenoid-type [3+2] cycloaddition reactions with ynal systems: A molecular electron density theory study. J. Org. Chem., 86 (18) 12644-12653.
48. Żmigrodzka M., Sadowski M., Kras J., Dresler E., Demchuk O. M., and Kula K. (2022) Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad., 1 26-35.
49. Zawadzińska K., Gaurav G. K., and Jasiński R. (2022) Preparation of conjugated nitroalkenes: short review. Sci. Rad., 1 69-83.
50. Kula K., Nagatsky R., Sadowski M., Siumka Y., and Demchuk O. M. (2023) Arylcyanomethylenequinone oximes: An overview of synthesis, chemical transformations, and biological activity. Molecules, 28 (13) 5229.
51. Woliński P., Kącka-Zych A., Mirosław B., Wielgus E., Olszewska A., and Jasiński R. (2022) Green, one-pot synthesis of 1,2-oxazine-type herbicides via non-catalyzed Hetero Diels-Alder reactions comprising (2E)-3-aryl-2-nitroprop-2-enenitriles. J. Clean. Prod., 356 131878.
52. Hatamie A., Marahel F., and Sharifat A. (2018) Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta, 176 518-525.
53. Haghani S. K., Ensafi A. A., Kazemifard N., and Rezaei B. (2020) A sensitive and selective optical sensor based on molecularly imprinting technique using green synthesized carbon dots for determination of trace amount of metronidazole. IEEE Sens. J., 20 (21) 12530-12536.
54. Yang S., Wang L., Zuo L., Zhao C., Li H., and Ding L. (2019) Non-conjugated polymer carbon dots for fluorometric determination of metronidazole. Mikrochim. Acta, 186 1-9.
55. Sukumar V., Chanduluru H. K., and Chinnusamy S. (2023) Ecofriendly analytical quality by design-based method for determining metronidazole, lidocaine and miconazole using RP-HPLC in semisolid dosage form. J. Taibah Univ. Sci., 17 (1) 2252593.
56. Matmour D., Hassam K. F. E., Hamoum N., Merad Y., Ziani N. H., and Toumi H. (2023) Comparison of HPLC Method and Potentiometric Titration Technique for the Content Determination of Metronidazole API. RHAZES: Green Appl. Chem., 17 21-31.
57. Sadek S. A., Abbar R. S., Atia Z. A. M., Diaa L. M., Naif H. J., Jafar K. F., ... and Kareem G. (2020) "Comparative of Chemical Methods for Determination Metronidazole-A Review. Mustansiriyah University, college of pharmacy, department of pharmaceutical chemistry, 5th grade, second semester, report.
58. Attia K. A., Nassar M. W., El-Zeiny M. B., and Serag A. (2016) Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form. Spectrochim. Acta A Mol. Biomol. Spectrosc., 154 232-236.
59. Vega E., and Sola N. (2001) Quantitative analysis of metronidazole in intravenous admixture with ciprofloxacin by first derivative spectrophotometry. J. Pharm. Biomed. Anal., 25 (3-4) 523-530.
60. Patel N. V., and Prajapati A. M. (2012) Q-absorbance ratio spectrophotometric method for the simultaneous estimation of ciprofloxacin and metronidazole in their combined dosage form. JPSBR, 2 (3) 118-122.
61. Mahrouse M. A., and Elkady E. F. (2011) Validated spectrophotometric methods for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in tablets. Chem. Pharm. Bull., 59 (12) 1485-1493.
62. Mahrouse M. A. (2012) Development and validation of a uv spectrophotometric method for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in binary mixture. J. Chem. Pharm. Res., 4 (11) 4710-4715.
63. Obaydo R. H., and Sakur A. A. (2019) A green analytical method using algorithm (pcca) for extracting components’ contribution from severely overlapped spectral signals in pharmaceutical mixtures. Res. J. Pharm. Technol., 12 (9) 4332-4338.
64. Lotfy H., Obaydo R. H., and Sakur A. A. (2021) Evaluation of assay and in-vitro dissolution profile of certain fixed-dose combination using green analytical method. Ann. Pharm. Fr., 79 (1) 3-15.
65. Sakur A. A., and Obaydo R. H. (2020) Pcca algorithm as a fingerprint resolution technique for the analysis of ciprofloxacin in the presence of its acid induced degradation product. Res. J. Pharm. Technol., 13 (12) 5999-6006.
66. Gupta D., Bhardwaj S., Sethi S., Pramanik S., Das D. K., Kumar R., Singh P. P., and Vashistha V. K. (2022) Simultaneous spectrophotometric determination of drug components from their dosage formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 270 120819.
67. El-Ghobashy M. R., and Abo-Talib N. F. (2010) Spectrophotometric methods for the simultaneous determination of binary mixture of metronidazole and diloxanide furoate without prior separation. J. Adv. Res., 1 (4) 323-329.
68. Issa M. M., Shanab A. M. A., and Shaat N. T. (2013) Kinetic spectrophotometric h-point standard addition method for the simultaneous determination of diloxanide furoate and metronidazole in binary mixtures and biological fluids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 114 592-598.
69. Obaydo R. H., and Alhaj Sakur A. (2019) Fingerprint spectrophotometric methods for the determination of co-formulated otic solution of ciprofloxacin and fluocinolone acetonide in their challengeable ratio. J. Anal. Methods Chem., 2019 8919345.
70. Navalon A., Ballesteros O., Blanc R., and Vı́Lchez J. L. (2000) Determination of ciprofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. Talanta, 52 (5) 845-852.
71. Sakira A. K., Corenthin M., De Braekeleer K., Delporte C., Yameogo J., Yabre M., Some T. I., Van Antwerpen P., Mertens D., and Kauffmann J. M. (2021) Determination of the quality of metronidazole formulations by near-infrared spectrophotometric analysis. Talanta Open, 3 100027.
72. Elkady E. F., and Mahrouse M. A. (2011) Reversed-phase ion-pair hplc and tlc-densitometric methods for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in tablets. Chromatographia, 73 (3) 297-305.
73. Hafeza H. M., Elshanawany A. A., Abdelaziz L. M., and Mohram M. S. (2015) Design of experiment utilization to develop a simple and robust rp-uplc technique for stability indicating method of ciprofloxacin hydrochloride and metronidazole in tablets. Eurasian J. Anal. Chem., 10 (2) 84-105.
74. Vega E., Dabbene V., Nassetta M., and Sola N. (1999) Validation of a reversed-phase lc method for quantitative analysis of intravenous admixtures of ciprofloxacin and metronidazole. J. Pharm. Biomed. Anal., 21 (5) 1003-1009.
75. Budiarti A., Gandjar I. G., and Rohman A. (2015) Liquid chromatography with uv detection for simultaneous determination of ciprofloxacin and metronidazole. J. Teknol., 72 (1) 45-47.
76. El-Bagary R., El-Zaher A. A., Elkady E., and Mandour A. A. (2016) Simultaneous determination of ciprofloxacin hydrochloride and metronidazole in spiked human plasma by ultra performance liquid chromatography-tandem mass spectroscopy. J. Appl. Pharm. Sci., 6 (3) 041-047.
77. Vella J., Busuttil F., Bartolo N. S., Sammut C., Ferrito V., Serracino-Inglott A., Azzopardi L. M., and Laferla G. (2015) A simple hplc–uv method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B., 989 80-85.
78. Imre S., Dogaru M. T., Vari C., Muntean T., and Kelemen L. (2003) Validation of an hplc method for the determination of ciprofloxacin in human plasma. J. Pharm. Biomed. Anal., 33 (1) 125-130.
79. Vybiralova Z., Nobilis M., Zoulova J., Květina J., and Petr P. (2005) High-performance liquid chromatographic determination of ciprofloxacin in plasma samples. J. Pharm. Biomed. Anal., 37 (5) 851-858.
80. Kamberi M., Tsutsumi K., Kotegawa T., Nakamura K., and Nakano S. (1998) Determination of ciprofloxacin in plasma and urine by hplc with ultraviolet detection. Clin. Chem., 44 (6) 1251-1255.
81. Sakur A. A., Dabbeet H. A., and Noureldin I. (2019) Novel drug selective sensors for simultaneous potentiometric determination of both ciprofloxacin and metronidazole in pure form and pharmaceutical formulations. Res. J. Pharm. Technol., 12 (7) 3377-3384.
82. Mollamahale Y. B., Ghorbani M., Ghalkhani M., Vossoughi M., and Dolati A. (2013) Highly sensitive 3d gold nanotube ensembles: Application to electrochemical determination of metronidazole. Electrochim. Acta, 106 288-292.
83. Mao A., Li H., Yu L., and Hu X. (2017) Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. J. Electroanal. Chem., 799 257-262.
84. Sinha N., and Balayla G. (2020) Hydroxychloroquine and covid-19. Postgrad. Med. J., 96 (1139) 550-555.
85. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., Labella A., Manson D. K., Kubin C., Barr R. G., Sobieszczyk M. E., and Schluger N. W. (2020) Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 382 (25) 2411-2418.
86. Chafai N., Benbouguerra K., Chafaa S., Hellal A. (2022) Quantum chemical study of hydroxychloroquine and chloroquine drugs used as a treatment of Covid-19. Iran. J. Chem. Chem. Eng., 41 (1) 27-36.
87. Ramzy S., Abdelazim A. H., Osman A. O., Hasan M. A. (2022) Spectrofluorimetric quantitative analysis of favipiravir, remdesivir and hydroxychloroquine in spiked human plasma. Spectrochim. Acta A Mol. Biomol. Spectrosc., 281 121625.
88. Bilgin Z. D., Evcil I., Yazgi D., Binay G., Okuyucu Genc C., Gulsen B., Huseynova A., Ozdemir A. Z., Ozmen E., Usta Y., Ustun S., and Caglar Andac S. (2021) Liquid chromatographic methods for Covid-19 drugs, hydroxychloroquine and chloroquine. J. Chromatogr. Sci., 59 (8) 748-757.
89. Pannu S., Akhtar M. J., and Kumar B. (2022) Analytical methodologies for determination of hydroxychloroquine and its metabolites in pharmaceutical, biological and environmental samples. Curr. Pharm. Anal., 18 (3) 273-290.
90. Wishart D. S., Guo A., Oler E., Wang F., Anjum A., Peters H., ... and Gautam V. (2022) HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res., 50 (D1) D622-D631.
91. Ayad M. M., Shalaby A. A., Abdellatef H. E., and Elsaid H. M. (1999) Spectrophotometric and atomic absorption spectrometric determination of certain cephalosporins. J. Pharm. Biomed. Anal., 18 (6) 975-983.
92. Abdel-Raheem Sh. A. A., Fouad M. R., Gad M. A., Kamal El-Dean A. M., and Tolba M. S. (2023) Environmentally Green Synthesis and Characterization of Some Novel Bioactive Pyrimidines with Excellent Bioefficacy and Safety Profile Towards Soil Organisms. J. Environ. Chem. Eng., 11 (5) 110839.
93. El-Ossaily Y. A., Alanazi N. M. M., Althobaiti I. O., Altaleb H. A., Al-Muailkel N. S., El-Sayed M. Y., Hussein M. F., Ahmed I. M., Alanazi M. M., Fawzy A., Abdel-Raheem Sh. A. A., and Tolba M. S. (2024) Multicomponent Approach to the Synthesis and Spectral Characterization of Some 3,5-Pyrazolididione Derivatives and Evaluation as Anti-inflammatory Agents. Curr. Chem. Lett., 13 (1) 127-140.
94. Ahmed A. A., Mohamed S. K., and Abdel-Raheem Sh. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm. Curr. Chem. Lett., 11 (4) 359-370.
95. Sebaiy M. M., El-Adl S. M., Elbaramawi S. S., Abdel-Raheem Sh. A. A., and Nafie A. (2024) Developing a highly validated and sensitive HPLC method for simultaneous estimation of cefotaxime and paracetamol in pure and pharmaceutical preparations. Curr. Chem. Lett., 13 (2) 435-444.
96. Yost R. L., and Derendorf H. (1985) Rapid chromatographic determination of cefotaxime and its metabolite in biological fluids. J. Chromatogr. B., 341 131-138.
97. Agüero J., Peris J. E., and San-Martín E. (1999) Validation of a high-performance chromatographic method for determination of cefotaxime in biological samples. Fresenius J. Anal. Chem., 363 289-293.
98. Al-Hakkani M. F. (2020) HPLC analytical method validation for determination of cefotaxime in the bulk and finished pharmaceutical dosage form. Sustain. Chem. Eng., 1 33-42.
99. Sharaf Y. A., Ibrahim A. E., El Deeb S., and Sayed R. A. (2023) Green chemometric determination of cefotaxime sodium in the presence of its degradation impurities using different multivariate data processing tools; gapi and agree greenness evaluation. Molecules, 28 (5) 2187.
100. Consortti L. P., and Salgado H. R. N. (2017) A critical review of analytical methods for quantification of cefotaxime. Crit. Rev. Anal. Chem., 47 (4) 359-371.
101. Saleh G. A., Badr I. H., El-Deen D. A. N., and Derayea S. M. (2019) Novel potentiometric sensor for the selective determination of cefotaxime sodium and its application to pharmaceutical analysis. IEEE Sens. J., 20 (7) 3415-3422.
102. Yue X., Xu X., Liu C., and Zhao S. (2022) Simultaneous determination of cefotaxime and nimesulide using poly (L-cysteine) and graphene composite modified glassy carbon electrode. Microchem. J., 174 107058.
103. Shahrokhian S., and Rastgar S. (2012) Construction of an electrochemical sensor based on the electrodeposition of Au–Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst, 137 (11) 2706-2715.
104. Bushra M. U., Akter N., Hassan M. R., Islam A., and Hossain M. R. (2014) Development and validation of a simple uv spectrophotometric method for the determination of cefotaxime sodium in bulk and pharmaceutical formulation. IOSR J. Pharm, 4 74-77.
105. Kzar T. T., Rasheed A. S., and Hassan M. J. (2021) Development of a validated hydrophilic interaction chromatography method for the determination of cefotaxime in pharmaceutical preparations. Egypt. J. Chem., 64 (6) 2967-2972.