How to cite this paper
Al-Sarray, A. (2024). Advancements in conjugated polymer research: applications in organic photovoltaics and field effect transistors.Current Chemistry Letters, 13(1), 207-224.
Refrences
1 Shirakawa H., Louis E. J., Macdiarmid A. G., Chiang C. K., and Heeger A. J. (1977) Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(ch) x. J. Chem. Soc., Chem. Commun., (16), 578-580.
2 Rasmussen S. C. (2020) Conjugated and conducting organic polymers: The first 150 years. Chem. Plus Chem. , 85 (7), 1412-1429.
3 Rodríguez‐Monge L., and Larsson S. (1995) Conductivity in polyacetylene. I. Ab initio calculation of charge localization, bond distances, and reorganization energy in model molecules. J. Chem. Phys., 102 (18), 7106-7115.
4 Rolland M., Aldissi M., Bernier P., Cadene M., and Schue F. (1981) Morphology of iodine-doped polyacetylene. Nature, 294 (5836), 60-61.
5 Shirakawa H. (2001) Nobel lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers. Rev. Mod. Phys., 73 (3), 713-719.
6 Fratini S., Nikolka M., Salleo A., Schweicher G., and Sirringhaus H. (2020) Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater., 19 (5), 491-502.
7 Facchetti A. (2011) Π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater., 23 (3), 733-758.
8 Langlois A., Mason G. T., Nguyen M. H., Rezapour M., Karsenti P.-L., Marquardt D., and Rondeau-Gagné S. (2019) Photophysical and optical properties of semiconducting polymer nanoparticles prepared from hyaluronic acid and polysorbate 80. ACS omega, 4 (27), 22591-22600.
9 Hu Z., Willard A. P., Ono R. J., Bielawski C. W., Rossky P. J., and Vanden Bout D. A. (2015) An insight into non-emissive excited states in conjugated polymers. Nat. Commun., 6 (1), 8246-8255.
10 Brazovskii S., Kirova N., and Matveenko S. (1984) The peierls effect in conducting polymers. Zh. Eksp. Teor. Fiz., 86, 743-757.
11 De Cuendias A., Hiorns R. C., Cloutet E., Vignau L., and Cramail H. (2010) Conjugated rod–coil block copolymers and optoelectronic applications. Polym. Int., 59 (11), 1452-1476.
12 Bombile J. H., Janik M. J., and Milner S. T. (2018) Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem., 20 (1), 317-331.
13 Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., and Yu L. (2015) Recent advances in bulk heterojunction polymer solar cells. Chem. Rev., 115 (23), 12666-12731.
14 Brus V. V., Lee J., Luginbuhl B. R., Ko S. J., Bazan G. C., and Nguyen T. Q. (2019) Solution‐processed semitransparent organic photovoltaics: From molecular design to device performance. Adv. Mater., 31 (30), 1900904-1900940.
15 Kim M., Ryu S. U., Park S. A., Choi K., Kim T., Chung D., and Park T. (2020) Donor–acceptor‐conjugated polymer for high‐performance organic field‐effect transistors: A progress report. Adv. Funct. Mater., 30 (20), 1904545-1904570.
16 Pei D., Wang Z., Peng Z., Zhang J., Deng Y., Han Y., Ye L., and Geng Y. (2020) Impact of molecular weight on the mechanical and electrical properties of a high-mobility diketopyrrolopyrrole-based conjugated polymer. Macromolecules, 53 (11), 4490-4500.
17 Jung I. S., Lee Y. J., Jeong D., Graf R., Choi T. L., Son W. J., Bulliard X., and Spiess H. W. (2016) Conformational analysis of oxygen-induced higher ordered structure of a, b-alternating poly(arylene vinylene) copolymers by solid-state nmr and molecular dynamics simulations. Macromolecules, 49, 3061-3069.
18 Wudl F., Kobayashi M., and Heeger A. (1984) Poly (isothianaphthene). J. Org. Chem., 49 (18), 3382-3384.
19 Liu Z., Sun J., Zhu Y.-X., Liu P., Zhang L., Chen J., Huang F., and Cao Y. (2015) Low band-gap benzodithiophene-thienothiophenecopolymers: The effect of dual two-dimensional substitutions on optoelectronic properties. Sci. China Chem., 58, 267-275.
20 Cao W., and Xue J. (2014) Recent progress in organic photovoltaics: Device architecture and optical design. Energy Environ. Sci., 7 (7), 2123-2144.
21 Ng L. W., Lee S. W., Chang D. W., Hodgkiss J. M., and Vak D. (2022) Organic photovoltaics’ new renaissance: Advances toward roll‐to‐roll manufacturing of non‐fullerene acceptor organic photovoltaics. Adv. Mater. Technol., 7 (10), 2101556-2101587.
22 Martínez‐Denegri G., Ferreira C. G., Ruiz‐Preciado M. A., Fassl P., Kramarenko M., Paetzold U. W., and Martorell J. (2022) Wide bandgap perovskite photovoltaic cells for stray light recycling in a system emitting broadband polarized light. Adv. Energy Mater., 12 (36), 2201473-2201480.
23 Bundgaard E., and Krebs F. C. (2007) Low band gap polymers for organic photovoltaics. Sol. Energy Mater Sol. Cells, 91 (11), 954-985.
24 Javid U. A., Ling J., Staffa J., Li M., He Y., and Lin Q. (2021) Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127 (18), 183601-183621.
25 Jiang Z., Gholamkhass B., and Servati P. (2019) Effects of interlayer properties on the performance of tandem organic solar cells with low and high band gap polymers. J. Mater. Res., 34 (14), 2407-2415.
26 Yin C., Kietzke T., Neher D., and Hörhold H.-H. (2007) Photovoltaic properties and exciplex emission of polyphenylenevinylene-based blend solar cells. Appl. Phys. Lett., 90 (9), 92117-92120.
27 Lange A., Krueger H., Ecker B., Tunc A. V., Von Hauff E., and Morana M. (2012) Influence of different copolymer sequences in low band gap polymers on their performance in organic solar cells. J. Polym. Sci. A Polym., 50 (8), 1622-1635.
28 Grzibovskis R., and Vembris A. (2018) Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: Case of p3ht: Pcbm. J. Mater. Sci., 53 (10), 7506-7515.
29 Yu G., Gao J., Hummelen J. C., Wudl F., and Heeger A. J. (1995) Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270 (5243), 1789-1791.
30 Chen Z., Tang Y., Lin B., Zhao H., Li T., Min T., Yan H., and Ma W. (2020) Probe and control of the tiny amounts of dopants in bhj film enable higher performance of polymer solar cells. ACS Appl. Mater. Interfaces, 12 (22), 25115-25124.
31 Deng M., Xu X., Lee Y. W., Ericsson L. K., Moons E., Woo H. Y., Li Y., Yu L., and Peng Q. (2020) Fine regulation of crystallisation tendency to optimize the bhj nanostructure and performance of polymer solar cells. Nanoscale, 12 (24), 12928-12941.
32 Ltayef M., Almoneef M. M., Taouali W., Mbarek M., and Alimi K. (2022) Conception and theoretical study of a new copolymer based on meh-ppv and p3ht: Enhancement of the optoelectronic properties for organic photovoltaic cells. Polymers, 14 (3), 513-533.
33 Surati K. R., and Prajapati M. (2015) Present and future perspectives of low band gap polymers towards organic photovoltaics. Invertis J. Renew. Energy, 5 (3), 122-128.
34 Deng Z., Li J., and Wang Z. (2023) Application of conjugated polymers in organic light-emitting diode and organic photovoltaics. Eighth International Conference on Energy Materials and Electrical Engineering (ICEMEE 2022). SPIE.
35 Triyana K., Yasuda T., Fujita K., and Tsutsui T. (2005) Improvement of heterojunction donor/acceptor organic photovoltaic devices by employing additional active layer. Jpn. J. Appl. Phys., 44 (4A), 1974-1977.
36 Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y., Ke X., Xiao Z., Ding L., and Xia R. (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361 (6407), 1094-1098.
37 Zhou H., Yang L., and You W. (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 45 (2), 607-632.
38 Wallace J., and Chen S. (2008) Fluorene-based conjugated oligomers for organic photonics and electronics. Polyfluorenes, 145-186.
39 Wang E., Wang L., Lan L., Luo C., Zhuang W., Peng J., and Cao Y. (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl. Phys. Lett., 92 (3), 1-23.
40 Watters D. C., Yi H., Pearson A. J., Kingsley J., Iraqi A., and Lidzey D. (2013) Fluorene‐based co‐polymer with high hole mobility and device performance in bulk heterojunction organic solar cells. Macromolecular rapid communications, 34 (14), 1157-1162.
41 R. Murad A., Iraqi A., Aziz S. B., N. Abdullah S., Abdulwahid R. T., and Hussen S. A. (2020) Optical, electrochemical, thermal, and structural properties of synthesized fluorene/dibenzosilole-benzothiadiazole dicarboxylic imide alternating organic copolymers for photovoltaic applications. Coatings, 10 (12), 1147-1171.
42 Zhu E., Bian L., Hai J., Tang W., and Zhang F. (2011) Towards high-efficiency organic solar cells: Polymers and devices developmentSolar cells: New aspects and solutions. 433-452.
43 Brabec C., Scherf U., and Dyakonov V. (2011) Organic photovoltaics: Materials, device physics, and manufacturing technologies, Ed, John Wiley & Sons.
44 Zhang Z.-G., Liu Y.-L., Yang Y., Hou K., Peng B., Zhao G., Zhang M., Guo X., Kang E.-T., and Li Y. (2010) Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups: Synthesis and photovoltaic application. Macromolecules, 43 (22), 9376-9383.
45 Chu T.-Y., Alem S., Tsang S.-W., Tse S.-C., Wakim S., Lu J., Dennler G., Waller D., Gaudiana R., and Tao Y. (2011) Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Appl. Phys. Lett., 98 (25), 253301-253306.
46 R. Murad A., Iraqi A., Aziz S. B., Hi H., N. Abdullah S., Brza M., and Abdulwahid R. T. (2020) Influence of fluorine substitution on the optical, thermal, electrochemical and structural properties of carbazole-benzothiadiazole dicarboxylic imide alternate copolymers. Polymers, 12 (12), 2910-2934.
47 Al-Azzawi A. G., Aziz S. B., Iraqi A., Murad A. R., Abdulwahid R. T., Alshehri S. M., and Ahamad T. (2021) Impact of ethynylene linkers on the optical and electrochemical properties of benzothiadiazole based alternate conjugated polymers. Arab. J. Chem., 14 (9), 103320-103331.
48 Spanggaard H., and Krebs F. C. (2004) A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater Sol. Cells, 83 (2-3), 125-146.
49 Cui W., Wu Y., Tian H., Geng Y., and Wang F. (2008) The first soluble conjugated poly (2, 6-anthrylene): Synthesis and properties. Chem. Comm., (8), 1017-1019.
50 Xu J., Fang Y., Ren P., Zhang H., Guo E., and Yang W. (2008) Synthesis and electrooptic properties of poly (2, 6‐anthracenevinylene) s. Macromolecular rapid communications, 29 (16), 1415-1420.
51 Usluer Ö., Boudiba S., Egbe D. A., Hirsch L., and Abbas M. (2015) Control of carrier mobilities for performance enhancement of anthracene-based polymer solar cells. RSC Adv., 5 (63), 50668-50672.
52 Egbe D. A., TüRk S., Rathgeber S., Kuhnlenz F., Jadhav R., Wild A., Birckner E., Adam G., Pivrikas A., and Cimrova V. (2010) Anthracene based conjugated polymers: Correlation between π− π-stacking ability, photophysical properties, charge carrier mobility, and photovoltaic performance. Macromolecules, 43 (3), 1261-1269.
53 Jung J. W., Liu F., Russell T. P., and Jo W. H. (2015) Anthracene‐based medium bandgap conjugated polymers for high performance polymer solar cells exceeding 8% pce without additive and annealing process. Adv. Energy Mater., 5 (11), 1500065-1500072.
54 Murad A. R., Iraqi A., Aziz S. B., Almeataq M. S., Abdullah S. N., and Brza M. A. (2020) Characteristics of low band gap copolymers containing anthracene-benzothiadiazole dicarboxylic imide: Synthesis, optical, electrochemical, thermal and structural studies. Polymers, 13 (1), 1-20.
55 Zhou P., Zhang Z.-G., Li Y., Chen X., and Qin J. (2014) Thiophene-fused benzothiadiazole: A strong electron-acceptor unit to build d–a copolymer for highly efficient polymer solar cells. Chem. Mater., 26 (11), 3495-3501.
56 Osaka I., Shimawaki M., Mori H., Doi I., Miyazaki E., Koganezawa T., and Takimiya K. (2012) Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc., 134 (7), 3498-3507.
57 Kim J., Yun M. H., Kim G.-H., Kim J. Y., and Yang C. (2012) Replacing 2, 1, 3-benzothiadiazole with 2, 1, 3-naphthothiadiazole in pcdtbt: Towards a low bandgap polymer with deep homo energy level. Polym. Chem., 3 (12), 3276-3281.
58 Wang M., Hu X., Liu P., Li W., Gong X., Huang F., and Cao Y. (2011) Donor–acceptor conjugated polymer based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc., 133 (25), 9638-9641.
59 Al-Azzawi A. G., Iraqi A., Aziz S. B., Zhang Y., Murad A. R., Hadi J. M., and Lidzey D. G. (2021) Synthesis, optical and electrochemical properties of naphthothiadiazole-based donor-acceptor polymers and their photovoltaic applications. Int. J. Electrochem. Sci., 16, 1-16.
60 Dou C., Ding Z., Zhang Z., Xie Z., Liu J., and Wang L. (2015) Developing conjugated polymers with high electron affinity by replacing a c c unit with a b← n unit. Angew. Chem. Int. Ed., 54 (12), 3648-3652.
61 Dou C., Long X., Ding Z., Xie Z., Liu J., and Wang L. (2016) An electron‐deficient building block based on the b← n unit: An electron acceptor for all‐polymer solar cells. Angew. Chem. Int. Ed. , 55 (4), 1436-1440.
62 Dou C., Liu J., and Wang L. (2017) Conjugated polymers containing b← n unit as electron acceptors for all-polymer solar cells. Sci. China Chem., 60, 450-459.
63 Liu J., and Wang L.-X. (2017) Polymer electron acceptors containing boron-nitrogen coordination bond (b<-n) for all-polymer solar cells. Acta Polym. Sin., (12), 1856-1869.
64 Zhao R., Wang N., Yu Y., and Liu J. (2020) Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater., 32 (3), 1308-1314.
65 Zhang Z., Miao J., Ding Z., Kan B., Lin B., Wan X., Ma W., Chen Y., Long X., and Dou C. (2019) Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun., 10 (1), 3271-3279.
66 Ding Z., Zhao R., Yu Y., and Liu J. (2019) All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A, 7 (46), 26533-26539.
67 Guo X., Ortiz R. P., Zheng Y., Hu Y., Noh Y.-Y., Baeg K.-J., Facchetti A., and Marks T. J. (2011) Bithiophene-imide-based polymeric semiconductors for field-effect transistors: Synthesis, structure− property correlations, charge carrier polarity, and device stability. J. Am. Chem. Soc., 133 (5), 1405-1418.
68 Hameury S., Kunz S., and Sommer M. (2017) Expanding the scope of electron-deficient c–h building blocks: Direct arylation of pyromellitic acid diimide. ACS omega, 2 (6), 2483-2488.
69 Yuen J. D., Pozdin V. A., Young A. T., Turner B. L., Giles I. D., Naciri J., Trammell S. A., Charles P. T., Stenger D. A., and Daniele M. A. (2020) Perylene-diimide-based n-type semiconductors with enhanced air and temperature stable photoconductor and transistor properties. Dyes Pigm., 174, 108014-108036.
70 Feng K., Guo H., Sun H., and Guo X. (2021) N-type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res., 54 (20), 3804-3817.
71 Feng K., Guo H., Wang J., Shi Y., Wu Z., Su M., Zhang X., Son J. H., Woo H. Y., and Guo X. (2021) Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure–property correlations, and thermoelectric performance. J. Am. Chem. Soc., 143 (3), 1539-1552.
72 Sun H., Liu B., Yu J., Zou X., Zhang G., Zhang Y., Zhang W., Su M., Fan Q., and Yang K. (2020) Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci. China Chem., 63, 1785-1792.
73 Mei J., Diao Y., Appleton A. L., Fang L., and Bao Z. (2013) Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc., 135 (18), 6724-6746.
74 Ikegami K., Kuroda S., Sugi M., Saito M., Iizima S., Nakamura T., Matsumoto M., Kawabata Y., and Saito G. (1987) Esr study on lb films of tmttf-octadecyltcnq. Synth. Met., 19 (1-3), 669-674.
75 Koezuka H., and Tsumura A. (1989) Field-effect transistor utilizing conducting polymers. Synth. Met., 28 (1-2), 753-760.
76 Wang C., Dong H., Hu W., Liu Y., and Zhu D. (2012) Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev., 112 (4), 2208-2267.
77 Smith J., Hamilton R., Mcculloch I., Stingelin-Stutzmann N., Heeney M., Bradley D. D., and Anthopoulos T. D. (2010) Solution-processed organic transistors based on semiconducting blends. J. Mater. Chem., 20 (13), 2562-2574.
78 Facchetti A. (2007) Semiconductors for organic transistors. Mater. Today, 10 (3), 28-37.
79 Su X. (2016) Engineering, synthesis, and characterization of new multi-lamellar liquid crystalline molecular architectures based on discotic and calamitic π-conjugated mesogens. Université Pierre et Marie Curie-Paris VI.
80 Liu K., Ouyang B., Guo X., Guo Y., and Liu Y. (2022) Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron., 6 (1), 1-19.
81 Bronstein H., Nielsen C. B., Schroeder B. C., and Mcculloch I. (2020) The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem., 4 (2), 66-77.
82 Paterson A. F., Singh S., Fallon K. J., Hodsden T., Han Y., Schroeder B. C., Bronstein H., Heeney M., Mcculloch I., and Anthopoulos T. D. (2018) Recent progress in high‐mobility organic transistors: A reality check. Adv. Mater., 30 (36), 1801079-1801105.
83 Tseng H. R., Phan H., Luo C., Wang M., Perez L. A., Patel S. N., Ying L., Kramer E. J., Nguyen T. Q., and Bazan G. C. (2014) High‐mobility field‐effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater., 26 (19), 2993-2998.
84 Un H. I., Wang J. Y., and Pei J. (2019) Recent efforts in understanding and improving the nonideal behaviors of organic field‐effect transistors. Adv. Sci., 6 (20), 1900375-1900395.
85 Siadati S. A., and Rezazadeh S. (2022) The extraordinary gravity of three atom 4π-components and 1, 3-dienes to c20-nxn fullerenes; a new gate to the future of nano technology. Scientiae Radices, 1 (1), 46-68.
86 Kreuter J. (2007) Nanoparticles—a historical perspective. Int. J. Pharm., 331 (1), 1-10.
87 Lu X.-Y., Wu D.-C., Li Z.-J., and Chen G.-Q. (2011) Polymer nanoparticles. Prog. Mol. Biol. Transl. Sci., 104, 299-323.
88 Koralli P., Tsikalakis S., Goulielmaki M., Arelaki S., Müller J., Nega A. D., Herbst F., Ball C. R., Gregoriou V. G., and Dimitrakopoulou-Strauss A. (2021) Rational design of aqueous conjugated polymer nanoparticles as potential theranostic agents of breast cancer. Mater. Chem. Front., 5 (13), 4950-4962.
89 Rao J. P., and Geckeler K. E. (2011) Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 36 (7), 887-913.
90 Pecher J., and Mecking S. (2010) Nanoparticles of conjugated polymers. Chem. Rev., 110 (10), 6260-6279.
91 Li W. (2013) Rational design and characterization of solution-processable organic photovoltaic devices: A study of both organic and inorganic architectures. University of Pennsylvania.
92 Yiming X. (2014) Engineering, synthesis and characterization of new π-conjugated (macro) molecular architectures for organic optoelectronics. Citeseer University.
93 Tuncel D., and Demir H. V. (2010) Conjugated polymer nanoparticles. Nanoscale, 2 (4), 484-494.
94 Dumitru L., Manoli K., Magliulo M., and Torsi L. (2013) Comparison between different architectures of an electrolyte-gated organic thin-film transistor fabricated on flexible kapton substrates, paper presented at the 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, City.
95 Besar K., Ardona H. a. M., Tovar J. D., and Katz H. E. (2015) Demonstration of hole transport and voltage equilibration in self-assembled π-conjugated peptide nanostructures using field-effect transistor architectures. ACS nano, 9 (12), 12401-12409.
96 Landfester K., Montenegro R., Scherf U., Güntner R., Asawapirom U., Patil S., Neher D., and Kietzke T. (2002) Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater., 14 (9), 651-655.
97 Ceriani C., Scagliotti M., Losi T., Luzio A., Mattiello S., Sassi M., Pianta N., Rapisarda M., Mariucci L., and Caironi M. (2023) Organic solvent free synthesis and processing of semiconducting polymers for field effect transistors in waterborne dispersions. Adv. Electron. Mater., 2201160-2201169.
98 Diah A. W., Quirino J. P., Belcher W., and Holdsworth C. I. (2014) Investigation of the doping efficiency of poly (styrene sulfonic acid) in poly (3, 4‐ethylenedioxythiophene)/poly (styrene sulfonic acid) dispersions by capillary electrophoresis. Electrophoresis, 35 (14), 1976-1983.
99 Tkachev S. V., Gubin S. P., Kim V. P., Kushnir A. E., and Kornilov D. Y. (2016) The dispersions of nanoparticles in water-organic solvents as the basis for the silver nano-ink for ink-jet printing. Radioelektronika, Nanosistemy, Inf. Tehnol., 8 (2), 171-184.
100 Hofmann A. I., Smaal W. T., Mumtaz M., Katsigiannopoulos D., Brochon C., Schütze F., Hild O. R., Cloutet E., and Hadziioannou G. (2015) An alternative anionic polyelectrolyte for aqueous pedot dispersions: Toward printable transparent electrodes. Angew. Chem., 127 (29), 8626-8630.
101 Saunders B. R., and Turner M. L. (2008) Nanoparticle–polymer photovoltaic cells. Adv. Colloid. Interface Sci., 138 (1), 1-23.
102 Holmes N. P., Nicolaidis N., Feron K., Barr M., Burke K. B., Al-Mudhaffer M., Sista P., Kilcoyne A. D., Stefan M. C., and Zhou X. (2015) Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater Sol. Cells, 140, 412-421.
103 Ulum S., Holmes N., Darwis D., Burke K., Kilcoyne A. D., Zhou X., Belcher W., and Dastoor P. (2013) Determining the structural motif of p3ht: Pcbm nanoparticulate organic photovoltaic devices. Sol. Energy Mater Sol. Cells, 110, 43-48.
104 Gärtner S., Christmann M., Sankaran S., Röhm H., Prinz E. M., Penth F., Pütz A., Türeli A. E., Penth B., and Baumstümmler B. (2014) Eco‐friendly fabrication of 4% efficient organic solar cells from surfactant‐free p3ht: Icba nanoparticle dispersions. Adv. Mater., 26 (38), 6653-6657.
105 Millstone J. E., Kavulak D. F., Woo C. H., Holcombe T. W., Westling E. J., Briseno A. L., Toney M. F., and Fréchet J. M. (2010) Synthesis, properties, and electronic applications of size-controlled poly (3-hexylthiophene) nanoparticles. Langmuir, 26 (16), 13056-13061.
106 Darwis D., Elkington D., Ulum S., Bryant G., Belcher W., Dastoor P., and Zhou X. (2013) Novel low voltage and solution processable organic thin film transistors based on water dispersed polymer semiconductor nanoparticulates. J. Colloid Interface Sci., 401, 65-69.
107 Shin D., Kang D., Lee J.-B., Ahn J.-H., Cho I.-W., Ryu M.-Y., Cho S. W., Jung N. E., Lee H., and Yi Y. (2019) Electronic structure of nonionic surfactant-modified pedot: Pss and its application in perovskite solar cells with reduced interface recombination. ACS Appl. Mater. Interfaces, 11 (18), 17028-17034.
108 Gershon T., Shin B., Bojarczuk N., Hopstaken M., Mitzi D. B., and Guha S. (2015) The role of sodium as a surfactant and suppressor of non‐radiative recombination at internal surfaces in cu2znsns4. Adv. Energy Mater., 5 (2), 1400849-1400862.
109 Cho J., Cheon K. H., Ahn H., Park K. H., Kwon S. K., Kim Y. H., and Chung D. S. (2015) High charge‐carrier mobility of 2.5 cm2 v− 1 s− 1 from a water‐borne colloid of a polymeric semiconductor via smart surfactant engineering. Adv. Mater., 27 (37), 5587-5592.
110 Behrendt J. M., Guzman J. a. E., Purdie L., Willcock H., Morrison J. J., Foster A. B., O'reilly R. K., Mccairn M. C., and Turner M. L. (2016) Scalable synthesis of multicolour conjugated polymer nanoparticles via suzuki-miyaura polymerisation in a miniemulsion and application in bioimaging. React. Funct. Polym., 107, 69-77.
111 Cho J., Yoon S., Sim K. M., Jeong Y. J., Park C. E., Kwon S.-K., Kim Y.-H., and Chung D. S. (2017) Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors. Energy Environ. Sci., 10 (11), 2324-2333.
112 Lin N., Ye Y., Guo Q., Yu J., and Guo T. (2020) Effect of using ink containing polyacrylate and silicone surfactant on the inkjet printing of quantum dot films. J. Inf. Disp., 21 (2), 113-121.
113 Zhang B., Pinky S. K., Kwansa A. L., Ferguson S., Yingling Y. G., and Stiff-Roberts A. D. (2023) Correlation of emulsion chemistry, film morphology, and device performance in polyfluorene leds deposited by rir-maple. ACS Appl. Mater. Interfaces, 15 (14), 18153-18165.
114 Yu S. H., Song H. G., Cho J., Kwon S.-K., Kim Y.-H., and Chung D. S. (2018) Synthetic approach for enhancing semiconductor properties of water-borne dpp-copolymer. Chem. Mater., 30 (14), 4808-4815.
115 Yun W., Chang S., Cogswell D. A., Eichmann S. L., Gizzatov A., Thomas G., Al-Hazza N., Abdel-Fattah A., and Wang W. (2020) Toward reservoir-on-a-chip: Rapid performance evaluation of enhanced oil recovery surfactants for carbonate reservoirs using a calcite-coated micromodel. Sci. Rep., 10 (1), 782-794.
116 Bolourchian N., and Panah M. S. (2022) The effect of surfactant type and concentration on physicochemical properties of carvedilol solid dispersions prepared by wet milling method. Iran. J. Pharm. Res., 21 (1), 1-14.