How to cite this paper
Kumar, K., Murugesan, S., Muneeswaran, T & Ramakritinan, C. (2023). Synthesis, characterization, and biological activities of five new trivalent lanthanide complexes of hydrazine and 3,3’-thiodipropanoic acid.Current Chemistry Letters, 12(4), 721-732.
Refrences
1. Younis S. A., Bhardwaj N., Bhardwaj S. K., Kim K. H., and Deep A. (2021) Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord. Chem. Rev., 29, 213620. (DOI: https://doi.org/10.1016/j.ccr.2020.213620).
2. Chundawat N. S., Jadoun S., Zarrintaj P., and Chauhan N. P. S. (2021) Lanthanide complexes as anticancer agents. Polyhedron, 207, 115387. (DOI: https://doi.org/10.1016/j.poly.2021.115387).
3. Kaczmarek M. T., Zabiszak M., Nowak M., and Jastrzab R. (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 370, 42-54. (DOI: https://doi.org/10.1016/j.ccr.2018.05.012).
4. Gaoa S., Huanga M., Suna Z., Li D., Xiea C., Fenga L., Liua S., Zhenga K., and Pang Q. (2021) A new mixed-ligand lanthanum(III) complex with salicylic acid and 1,10-phenanthroline: Synthesis, characterization, antibacterial activity, and underlying mechanism. J. Mol. Struct., 1225, 129096. (DOI: https://doi.org/10.1016/j.molstruc.2020.129096).
5. Taha Z. A., Ababneh T. S., Hijazi A. K., AL-Aqtash S. M., Al-Momani W. M., and Mhaidat I. (2022) Synthesis, spectral characterization, thermal, computational and antibacterial studies of lanthanide complexes with 2-fluorobenzoic acid-(5-R-2-hydroxy-benzylidene) hydrazide {R = chloro or bromo). J. Saudi Chem. Soc., 26, 101400. (DOI: https://doi.org/10.1016/j.jscs.2021.101400).
6. Aime S., and Baranyai Z. (2022) How the catalysis of the prototropic exchange affects the properties of lanthanide(III) complexes in their applications as MRI contrast agents. Inorg. Chim. Acta, 532, 120730. (DOI: https://doi.org/10.1016/j.ica.2021.120730).
7. Franklin S. J. (2001) Lanthanide-mediated DNA hydrolysis. Curr. Opin. Chem. Biol., 5, 201–208. (DOI: https://doi.org/10.1016/S1367-5931(00)00191-5).
8. Geng S., Ren N., He S. M., and Zhang J. J. (2022) Synthesis and structural characterization of lanthanide metal complexes by 2-fluorobenzoic acid with 2,2′:6′,2″-terpyridine, and their fluorescence properties. J. Mol. Struct., 1252, 132165. (DOI: https://doi.org/10.1016/j.molstruc.2021.132165).
9. Belousov Y. A., Drozdov A. A., Taydakov I. V., Marchetti F., Pettinari R., and Pettinari C. (2021) Lanthanide azolecarboxylate compounds: Structure, luminescent properties and applications. Coord. Chem. Rev., 445, 214084. (DOI: https://doi.org/10.1016/j.ccr.2021.214084).
10. Navarro A. C., Romero D. H., Parra A. F., Rivera J. M., Blum S. E. C., and Peralta R. C. (2021) Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzo[d]imidazol-2-yl)methyl)amine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine. Coord. Chem. Rev., 427, 213587. (DOI: https://doi.org/10.1016/j.ccr.2020.213587).
11. Barkanov A., Zakharova A., Vlasova T., Barkanova E., Khomyakov A., Avetissov I., Taydakov I., Datskevich N., Goncharenko V., and Avetisov R. (2022) NIR-OLED structures based on lanthanide coordination compounds: synthesis and luminescent properties. J. Mater. Sci., 57, 8393–8405. (DOI: https://doi.org/10.1007/s10853-021-06721-4).
12. Guerra R. B., Galico D. A., Silva T. F. C. F., Aguiar J., Venturini J., and Bannach G. (2021) Rare-earth complexes with anti-inflammatory drug sulindac: Synthesis, characterization, spectroscopic and in vitro biological studies, Inorg. Chim. Acta, 526, 120516. (DOI: https://doi.org/10.1016/j.ica.2021.120516).
13. Yamin A. A. A., Abduh M. S., Saghir S. A. M., and gabri N. A. (2022) Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes. Pharmaceuticals, 15(4), 454. (DOI: https://doi.org/10.3390/ph15040454).
14. Kapoor P., Fahmi N., and Singh R. V. (2011) Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines. Spectrochim. Acta A, 83, 74–81. (DOI: https://doi.org/10.1016/j.saa.2011.07.054).
15. Zong G. C., Huo J. X., Ren N., Zhang J. J., Qi X. X., Gao J., Geng L. N., Wang S. P., and Shi S. K. (2015) Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline. Dalton Trans., 44, 14877–14886. (DOI: https://doi.org/10.1039/C5DT01969A).
16. Tiwary S. K., Prakash R., and Rathore D. P. S. (1978) Metal complexes of thiopolycarboxylic acid Co(II), Ni(II), Cu(II) and Cr(III) complexes with 3,3-thiodipropionic acid. J. Indian Chem. Soc., 55, 537–538.
17. Cheng H. J., Shen Y. L., Zhang S. Y., Ji H. W., Yin W. Y., Li . K., and Yuan R. X. (2015) Three Coordination Polymers Constructed with Zinc(II), 3,3′-Thiodipropionic Acid, and Bipyridyl Ligands: Syntheses, Crystal Structures and Luminescent Properties. Z. Anorg. Allg. Chem., 641, 1575–1580. (DOI: https://doi.org/10.1002/zaac.201500167).
18. Chandra S., and Sharma A. K. (2009) Synthesis, Thermal Behaviour, XRD, and Luminescent Properties of Lighter Lanthanidethiodipropionate Hydrates Containing Aminogunidine as Neutral Ligand. Res. Lett. Inorg. Chem., Article ID: 945670. (DOI: https://doi.org/10.1155/2009/945670 .
19. Packiaraj S., and Govindarajan S. (2014) Synthesis, Thermal Behaviour, XRD, and Luminescent Properties of Lighter Lanthanidethiodipropionate Hydrates Containing Aminogunidine as Neutral Ligand. Open J. Inorg. Chem., 4, 41–49. (DOI: https://doi.org/10.4236/ojic.2014.43006).
20. Chlebda D. K., Jedrzejczyk R.J., Jodlowski P. J., and Lojewska J. (2017) Surface structure of cobalt, palladium, and mixed oxide‐based catalysts and their activity in methane combustion studied by means of micro‐Raman spectroscopy. J. Raman Spectrosc., 1-10. (DOI: https://doi.org/10.1002/jrs.5261 ).
21. Jodlowski P. J., Chlebda D., Piwowarczyk E., Chrzan M., Jedrzejczyk R. J., Sitarz M., Wegrzynowicz A., Kolodziej A., and Lojewska J. (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement, J. Mol. Struct., 1126, 132-140. (DOI: https://doi.org/10.1016/j.molstruc.2016.02.039).
22. Lojewskaa J., Knapika A., Jodlowski P., Lojewski T., and Kolodziej A. (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal. Today, 216, 11-17. (DOI: https://doi.org/10.1016/j.cattod.2013.05.008).
23. Chlebda D. K., Stachurska P., Jedrzejczyk R. J., Kuterasinski L., Dziedzicka A., Sylwia G., Chmielarz L., Lojewska J., Sitarz M., and Jodowski P. J. (2018) DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. Nanomaterials, 8(1), 21. (DOI: https://doi.org/10.3390/nano8010021).
24. Jodlowski P.J., Chlebda D. K., Jedrzejczyk R. J., Dziedzicka A., Kuterasinski L., and Sitarz M. (2017) Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method. Appl. Surf. Sci., 427, 563-574. (DOI: https://doi.org/10.1016/j.apsusc.2017.08.057).
25. Heaton B. T., Jacob C., and Page P. (1996) Transition metal complexes containing hydrazine and substituted hydrazines. Coord. Chem. Rev., 154, 193–229. (DOI: https://doi.org/10.1016/0010-8545(96)01285-4).
26. Premkumar T., and Govindarajan S. (2010) Thermoanalytical and spectroscopic studies on hydrazinium lighter lanthanide complexes of 2-pyrazinecarboxylic acid. J. Therm. Anal. Calorim., 100, 725–732. (DOI: https://doi.org/10.1007/s10973-009-0117-1).
27. Vikram L., and Sivasankar B. N. (2008) Hydrazinium metal(II) and metal(III) ethylenediamine tetraacetate hydrates. J. Therm. Anal. Calorim., 91, 963–970. (DOI: https://doi.org/10.1007/s10973-007-8612-8 ).
28. Gonsalves L. R., Verenkar V. M. S., and Mojumdar S. C. (2009) Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4. J. Therm. Anal. Calorim., 96, 53–57. (DOI: https://doi.org/10.1007/s10973-008-9837-x).
29. Raju B., and Sivasankar B. N. (2008) Spectral, thermal and X-ray studies on some new Bis-hydrazine lanthanide(III) glyoxylates. J. Therm. Anal. Calorim., 94, 289–296. (DOI: https://doi.org/10.1007/s10973-007-8953-3).
30. Ravindranathan P., and Patil K. C. (1983) Thermal reactivity of metal formate hydrazinates. Thermochim. Acta, 71, 53–57. (DOI: https://doi.org/10.1016/0040-6031(83)80354-2).
31. Mahesh G. V., and Patil K. C. (1983) Thermal reactivity of metal acetate hydrazinates. Thermochim. Acta, 99, 153–158. (DOI: https://doi.org/10.1016/0040-6031(86)85277-7).
32. Sivasankar B. N., and Govindarajan S. (1994) Z. Naturforsch., 49b, 950–954. (DOI: https://doi.org/10.1515/znb-1994-0716).
33. Sivasankar B. N., and Govindarajan S. (1994) Tris-hydrazine metal glycinates and glycolates: Preparation, spectral and thermal studies. Thermochim. Acta, 244, 235–242. (DOI: https://doi.org/10.1016/0040-6031(94)80222-X).
34. Kuppusamy K., and Govindarajan S. (1996) Synthesis, spectral and thermal studies of some 3d-metal hydroxybenzoate hydrazinate complexes. Thermochim. Acta, 274, 125–138. (DOI: https://doi.org/10.1016/0040-6031(95)02700-9).
35. Vairam S., Premkumar T., and Govindarajan S. (2010) Trimellitate complexes of divalent transition metals with hydrazinium cation. J. Therm. Anal. Calorim., 100, 955–960. (DOI: https://doi.org/10.1007/s10973-009-0459-8 ).
36. Vairam S., Premkumar T., and Govindarajan S. (2010) Preparation and thermal behaviour of divalent transition metal complexes of pyromellitic acid with hydrazine. J. Therm. Anal. Calorim., 101, 979–985. (DOI: https://doi.org/10.1007/s10973-009-0433-5).
37. Arunadevi N. (2009) [Ph.D thesis], Anna university, Chennai, India.
38. Arunadevi N., Devipriya S., and Vairam S. (2009) Hydrazinium metal 1-hydroxy-2-naphthoates—new precursors for metal oxides. Inter. J. Engg. Sci. Tech., 3, 1–8.
39. Grirrane A., Alvarez E., Pastor A., and Galindo A. (2010) Thiodipropionate ZnII Complexes: Synthesis, DFT Studies, and X-ray Structure of [{Zn(phen)(H2O)}2(μ-tdp)2]·3H2O. Z. Anorg. Allg. Chem., 636, 2409–2412. (DOI: https://doi.org/10.1002/zaac.201000145).
40. Yang P. P., Li. B., Wang Y. H., Gu W., and Liu X. (2008) Synthesis, Structure, and Luminescence Properties of Zinc(II) and Cadmium(II) Complexes containing the Flexible Ligand of 3,3′-Thiodipropionic Acid. Z. Anorg. Allg. Chem., 634, 1221–1224. (DOI: https://doi.org/10.1002/zaac.200700597).
41. Arici M., Yesilel O. Z., Keskin S., and Tas M. (2012) A three-dimensional silver(I) framework assembled from 3,3′-thiodipropionate: Synthesis, structure and molecular simulations for hydrogen gas adsorption. Polyhedron, 45, 103–106. (DOI: https://doi.org/10.1016/j.poly.2012.07.060).
42. Arici M., Yesilel O. Z., Sahin O., and Buyukgungor O. (2014) Two dimensional coordination polymers with 3,3′-thiodipropionate: An unprecedented coordination mode and strong hydrogen-bond network. Polyhedron, 67, 456–463. (DOI: https://doi.org/10.1016/j.poly.2013.09.040).
43. Brzyska W., and Ozga W. (1996) Preparation and properties of Y(III) and lanthanide(III) complexes with pyridine-2,4-dicarboxylic acid. Thermochim. Acta, 273, 205–216. (DOI: https://doi.org/10.1016/0040-6031(95)02393-3).
44. Braibanti A., Dallavalle F., Pellingheli M. A., and Laporati E. (1968) The nitrogen-nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 7, 1430–1433 (DOI: https://doi.org/10.1021/ic50065a034).
45. Tiwari S. K., and Rathore D. P. S. (1979) Metal-complexes of thiopolycarboxylic acid - magnetic and spectral studies of zinc(II), cadmium(II), mercury(II), manganese(II) and iron(III) complexes with thiodisuccinic acid. Natl. Acad. Sci. Lett., 8, 293–296.
46. Reisfeld R., and Jorgensen C. K. (1977) Lasers and Excited States of Rare Earths. Springer-Verlag, Berlin, pp 64–122. (DOI: https://doi.org/10.1007/978-3-642-66696-4-2).
47. Carnall W. T., Fields P. R., and Rajnak K. (1968) Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Phys., 49, 4412–4423. (DOI: https://doi.org/10.1063/1.1669892).
48. Patil K. C. (1986) Metal-hydrazine complexes as precursors to oxide materials. J. Chem. Sci., 96, 459–464. (DOI: https://doi.org/10.1007/BF02936298).
49. Shanker K., Rohini R., Ravinder V., and Reddy P. M. (2009) Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies. Spectrochim. Acta A, 73, 205–211. (DOI: https://doi.org/10.1016/j.saa.2009.01.021).
50. Atabay N. M. A., Dulger B., and Gucin F. (2005) Structural characterization and antimicrobial activity of 1,3-bis(2-benzimidazyl)-2-thiapropane ligand and its Pd(II) and Zn(II) halide complexes. Eur. J. Med. Chem., 40, 1096–1102. (DOI: https://doi.org/10.1016/j.ejmech.2005.05.006).
51. Tweedy B. G. (1964) Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology, 55, 910–914.
52. Dharmaraj N., Viswanathamurthi P., and Natarajan K. (2002) Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Trans. Met. Chem., 26, 105–109. (DOI: https://doi.org/10.1023/A:1007132408648 ).
53. Vogel A. I. (1975) Volumetric (titrimetric) analysis. In A Text Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London, p 380.
54. Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., and Yolke R. H. (1995) Manual of Clinical Microbiology, ASM, Washington, DC, p 6.
55. Londonkar R. L., Kattegouga U. M., Shivsharanappa K., and Hanchinalmath J. V. (2013) Phytochemical screening and in vitro antimicrobial activity of Typha angustifolia Linn leaves extract against pathogenic gram-negative microorganisms. J. Pharm. Res., 6, 280–283. (DOI: https://doi.org/10.1016/j.jopr.2013.02.010).
56. NCCLS (National Committee for Clinical Laboratory Standards) (1997) Performance Standards for Antimicrobial Disc Susceptibility Test, Approved Standard M2-A6, NCCLS, 6th edn, Wayne, Pa, USA.
57. Perez C., Paul M., and Bezique P. (1990) An Antibiotic assay by the agar well diffusion method. Alta. Biomed. Group Experiences, 15, 113.
2. Chundawat N. S., Jadoun S., Zarrintaj P., and Chauhan N. P. S. (2021) Lanthanide complexes as anticancer agents. Polyhedron, 207, 115387. (DOI: https://doi.org/10.1016/j.poly.2021.115387).
3. Kaczmarek M. T., Zabiszak M., Nowak M., and Jastrzab R. (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 370, 42-54. (DOI: https://doi.org/10.1016/j.ccr.2018.05.012).
4. Gaoa S., Huanga M., Suna Z., Li D., Xiea C., Fenga L., Liua S., Zhenga K., and Pang Q. (2021) A new mixed-ligand lanthanum(III) complex with salicylic acid and 1,10-phenanthroline: Synthesis, characterization, antibacterial activity, and underlying mechanism. J. Mol. Struct., 1225, 129096. (DOI: https://doi.org/10.1016/j.molstruc.2020.129096).
5. Taha Z. A., Ababneh T. S., Hijazi A. K., AL-Aqtash S. M., Al-Momani W. M., and Mhaidat I. (2022) Synthesis, spectral characterization, thermal, computational and antibacterial studies of lanthanide complexes with 2-fluorobenzoic acid-(5-R-2-hydroxy-benzylidene) hydrazide {R = chloro or bromo). J. Saudi Chem. Soc., 26, 101400. (DOI: https://doi.org/10.1016/j.jscs.2021.101400).
6. Aime S., and Baranyai Z. (2022) How the catalysis of the prototropic exchange affects the properties of lanthanide(III) complexes in their applications as MRI contrast agents. Inorg. Chim. Acta, 532, 120730. (DOI: https://doi.org/10.1016/j.ica.2021.120730).
7. Franklin S. J. (2001) Lanthanide-mediated DNA hydrolysis. Curr. Opin. Chem. Biol., 5, 201–208. (DOI: https://doi.org/10.1016/S1367-5931(00)00191-5).
8. Geng S., Ren N., He S. M., and Zhang J. J. (2022) Synthesis and structural characterization of lanthanide metal complexes by 2-fluorobenzoic acid with 2,2′:6′,2″-terpyridine, and their fluorescence properties. J. Mol. Struct., 1252, 132165. (DOI: https://doi.org/10.1016/j.molstruc.2021.132165).
9. Belousov Y. A., Drozdov A. A., Taydakov I. V., Marchetti F., Pettinari R., and Pettinari C. (2021) Lanthanide azolecarboxylate compounds: Structure, luminescent properties and applications. Coord. Chem. Rev., 445, 214084. (DOI: https://doi.org/10.1016/j.ccr.2021.214084).
10. Navarro A. C., Romero D. H., Parra A. F., Rivera J. M., Blum S. E. C., and Peralta R. C. (2021) Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzo[d]imidazol-2-yl)methyl)amine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine. Coord. Chem. Rev., 427, 213587. (DOI: https://doi.org/10.1016/j.ccr.2020.213587).
11. Barkanov A., Zakharova A., Vlasova T., Barkanova E., Khomyakov A., Avetissov I., Taydakov I., Datskevich N., Goncharenko V., and Avetisov R. (2022) NIR-OLED structures based on lanthanide coordination compounds: synthesis and luminescent properties. J. Mater. Sci., 57, 8393–8405. (DOI: https://doi.org/10.1007/s10853-021-06721-4).
12. Guerra R. B., Galico D. A., Silva T. F. C. F., Aguiar J., Venturini J., and Bannach G. (2021) Rare-earth complexes with anti-inflammatory drug sulindac: Synthesis, characterization, spectroscopic and in vitro biological studies, Inorg. Chim. Acta, 526, 120516. (DOI: https://doi.org/10.1016/j.ica.2021.120516).
13. Yamin A. A. A., Abduh M. S., Saghir S. A. M., and gabri N. A. (2022) Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes. Pharmaceuticals, 15(4), 454. (DOI: https://doi.org/10.3390/ph15040454).
14. Kapoor P., Fahmi N., and Singh R. V. (2011) Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines. Spectrochim. Acta A, 83, 74–81. (DOI: https://doi.org/10.1016/j.saa.2011.07.054).
15. Zong G. C., Huo J. X., Ren N., Zhang J. J., Qi X. X., Gao J., Geng L. N., Wang S. P., and Shi S. K. (2015) Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline. Dalton Trans., 44, 14877–14886. (DOI: https://doi.org/10.1039/C5DT01969A).
16. Tiwary S. K., Prakash R., and Rathore D. P. S. (1978) Metal complexes of thiopolycarboxylic acid Co(II), Ni(II), Cu(II) and Cr(III) complexes with 3,3-thiodipropionic acid. J. Indian Chem. Soc., 55, 537–538.
17. Cheng H. J., Shen Y. L., Zhang S. Y., Ji H. W., Yin W. Y., Li . K., and Yuan R. X. (2015) Three Coordination Polymers Constructed with Zinc(II), 3,3′-Thiodipropionic Acid, and Bipyridyl Ligands: Syntheses, Crystal Structures and Luminescent Properties. Z. Anorg. Allg. Chem., 641, 1575–1580. (DOI: https://doi.org/10.1002/zaac.201500167).
18. Chandra S., and Sharma A. K. (2009) Synthesis, Thermal Behaviour, XRD, and Luminescent Properties of Lighter Lanthanidethiodipropionate Hydrates Containing Aminogunidine as Neutral Ligand. Res. Lett. Inorg. Chem., Article ID: 945670. (DOI: https://doi.org/10.1155/2009/945670 .
19. Packiaraj S., and Govindarajan S. (2014) Synthesis, Thermal Behaviour, XRD, and Luminescent Properties of Lighter Lanthanidethiodipropionate Hydrates Containing Aminogunidine as Neutral Ligand. Open J. Inorg. Chem., 4, 41–49. (DOI: https://doi.org/10.4236/ojic.2014.43006).
20. Chlebda D. K., Jedrzejczyk R.J., Jodlowski P. J., and Lojewska J. (2017) Surface structure of cobalt, palladium, and mixed oxide‐based catalysts and their activity in methane combustion studied by means of micro‐Raman spectroscopy. J. Raman Spectrosc., 1-10. (DOI: https://doi.org/10.1002/jrs.5261 ).
21. Jodlowski P. J., Chlebda D., Piwowarczyk E., Chrzan M., Jedrzejczyk R. J., Sitarz M., Wegrzynowicz A., Kolodziej A., and Lojewska J. (2016) In situ and operando spectroscopic studies of sonically aided catalysts for biogas exhaust abatement, J. Mol. Struct., 1126, 132-140. (DOI: https://doi.org/10.1016/j.molstruc.2016.02.039).
22. Lojewskaa J., Knapika A., Jodlowski P., Lojewski T., and Kolodziej A. (2013) Topography and morphology of multicomponent catalytic materials based on Co, Ce and Pd oxides deposited on metallic structured carriers studied by AFM/Raman interlaced microscopes. Catal. Today, 216, 11-17. (DOI: https://doi.org/10.1016/j.cattod.2013.05.008).
23. Chlebda D. K., Stachurska P., Jedrzejczyk R. J., Kuterasinski L., Dziedzicka A., Sylwia G., Chmielarz L., Lojewska J., Sitarz M., and Jodowski P. J. (2018) DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. Nanomaterials, 8(1), 21. (DOI: https://doi.org/10.3390/nano8010021).
24. Jodlowski P.J., Chlebda D. K., Jedrzejczyk R. J., Dziedzicka A., Kuterasinski L., and Sitarz M. (2017) Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method. Appl. Surf. Sci., 427, 563-574. (DOI: https://doi.org/10.1016/j.apsusc.2017.08.057).
25. Heaton B. T., Jacob C., and Page P. (1996) Transition metal complexes containing hydrazine and substituted hydrazines. Coord. Chem. Rev., 154, 193–229. (DOI: https://doi.org/10.1016/0010-8545(96)01285-4).
26. Premkumar T., and Govindarajan S. (2010) Thermoanalytical and spectroscopic studies on hydrazinium lighter lanthanide complexes of 2-pyrazinecarboxylic acid. J. Therm. Anal. Calorim., 100, 725–732. (DOI: https://doi.org/10.1007/s10973-009-0117-1).
27. Vikram L., and Sivasankar B. N. (2008) Hydrazinium metal(II) and metal(III) ethylenediamine tetraacetate hydrates. J. Therm. Anal. Calorim., 91, 963–970. (DOI: https://doi.org/10.1007/s10973-007-8612-8 ).
28. Gonsalves L. R., Verenkar V. M. S., and Mojumdar S. C. (2009) Preparation and characterization of Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4. J. Therm. Anal. Calorim., 96, 53–57. (DOI: https://doi.org/10.1007/s10973-008-9837-x).
29. Raju B., and Sivasankar B. N. (2008) Spectral, thermal and X-ray studies on some new Bis-hydrazine lanthanide(III) glyoxylates. J. Therm. Anal. Calorim., 94, 289–296. (DOI: https://doi.org/10.1007/s10973-007-8953-3).
30. Ravindranathan P., and Patil K. C. (1983) Thermal reactivity of metal formate hydrazinates. Thermochim. Acta, 71, 53–57. (DOI: https://doi.org/10.1016/0040-6031(83)80354-2).
31. Mahesh G. V., and Patil K. C. (1983) Thermal reactivity of metal acetate hydrazinates. Thermochim. Acta, 99, 153–158. (DOI: https://doi.org/10.1016/0040-6031(86)85277-7).
32. Sivasankar B. N., and Govindarajan S. (1994) Z. Naturforsch., 49b, 950–954. (DOI: https://doi.org/10.1515/znb-1994-0716).
33. Sivasankar B. N., and Govindarajan S. (1994) Tris-hydrazine metal glycinates and glycolates: Preparation, spectral and thermal studies. Thermochim. Acta, 244, 235–242. (DOI: https://doi.org/10.1016/0040-6031(94)80222-X).
34. Kuppusamy K., and Govindarajan S. (1996) Synthesis, spectral and thermal studies of some 3d-metal hydroxybenzoate hydrazinate complexes. Thermochim. Acta, 274, 125–138. (DOI: https://doi.org/10.1016/0040-6031(95)02700-9).
35. Vairam S., Premkumar T., and Govindarajan S. (2010) Trimellitate complexes of divalent transition metals with hydrazinium cation. J. Therm. Anal. Calorim., 100, 955–960. (DOI: https://doi.org/10.1007/s10973-009-0459-8 ).
36. Vairam S., Premkumar T., and Govindarajan S. (2010) Preparation and thermal behaviour of divalent transition metal complexes of pyromellitic acid with hydrazine. J. Therm. Anal. Calorim., 101, 979–985. (DOI: https://doi.org/10.1007/s10973-009-0433-5).
37. Arunadevi N. (2009) [Ph.D thesis], Anna university, Chennai, India.
38. Arunadevi N., Devipriya S., and Vairam S. (2009) Hydrazinium metal 1-hydroxy-2-naphthoates—new precursors for metal oxides. Inter. J. Engg. Sci. Tech., 3, 1–8.
39. Grirrane A., Alvarez E., Pastor A., and Galindo A. (2010) Thiodipropionate ZnII Complexes: Synthesis, DFT Studies, and X-ray Structure of [{Zn(phen)(H2O)}2(μ-tdp)2]·3H2O. Z. Anorg. Allg. Chem., 636, 2409–2412. (DOI: https://doi.org/10.1002/zaac.201000145).
40. Yang P. P., Li. B., Wang Y. H., Gu W., and Liu X. (2008) Synthesis, Structure, and Luminescence Properties of Zinc(II) and Cadmium(II) Complexes containing the Flexible Ligand of 3,3′-Thiodipropionic Acid. Z. Anorg. Allg. Chem., 634, 1221–1224. (DOI: https://doi.org/10.1002/zaac.200700597).
41. Arici M., Yesilel O. Z., Keskin S., and Tas M. (2012) A three-dimensional silver(I) framework assembled from 3,3′-thiodipropionate: Synthesis, structure and molecular simulations for hydrogen gas adsorption. Polyhedron, 45, 103–106. (DOI: https://doi.org/10.1016/j.poly.2012.07.060).
42. Arici M., Yesilel O. Z., Sahin O., and Buyukgungor O. (2014) Two dimensional coordination polymers with 3,3′-thiodipropionate: An unprecedented coordination mode and strong hydrogen-bond network. Polyhedron, 67, 456–463. (DOI: https://doi.org/10.1016/j.poly.2013.09.040).
43. Brzyska W., and Ozga W. (1996) Preparation and properties of Y(III) and lanthanide(III) complexes with pyridine-2,4-dicarboxylic acid. Thermochim. Acta, 273, 205–216. (DOI: https://doi.org/10.1016/0040-6031(95)02393-3).
44. Braibanti A., Dallavalle F., Pellingheli M. A., and Laporati E. (1968) The nitrogen-nitrogen stretching band in hydrazine derivatives and complexes. Inorg. Chem. 7, 1430–1433 (DOI: https://doi.org/10.1021/ic50065a034).
45. Tiwari S. K., and Rathore D. P. S. (1979) Metal-complexes of thiopolycarboxylic acid - magnetic and spectral studies of zinc(II), cadmium(II), mercury(II), manganese(II) and iron(III) complexes with thiodisuccinic acid. Natl. Acad. Sci. Lett., 8, 293–296.
46. Reisfeld R., and Jorgensen C. K. (1977) Lasers and Excited States of Rare Earths. Springer-Verlag, Berlin, pp 64–122. (DOI: https://doi.org/10.1007/978-3-642-66696-4-2).
47. Carnall W. T., Fields P. R., and Rajnak K. (1968) Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Phys., 49, 4412–4423. (DOI: https://doi.org/10.1063/1.1669892).
48. Patil K. C. (1986) Metal-hydrazine complexes as precursors to oxide materials. J. Chem. Sci., 96, 459–464. (DOI: https://doi.org/10.1007/BF02936298).
49. Shanker K., Rohini R., Ravinder V., and Reddy P. M. (2009) Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies. Spectrochim. Acta A, 73, 205–211. (DOI: https://doi.org/10.1016/j.saa.2009.01.021).
50. Atabay N. M. A., Dulger B., and Gucin F. (2005) Structural characterization and antimicrobial activity of 1,3-bis(2-benzimidazyl)-2-thiapropane ligand and its Pd(II) and Zn(II) halide complexes. Eur. J. Med. Chem., 40, 1096–1102. (DOI: https://doi.org/10.1016/j.ejmech.2005.05.006).
51. Tweedy B. G. (1964) Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology, 55, 910–914.
52. Dharmaraj N., Viswanathamurthi P., and Natarajan K. (2002) Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Trans. Met. Chem., 26, 105–109. (DOI: https://doi.org/10.1023/A:1007132408648 ).
53. Vogel A. I. (1975) Volumetric (titrimetric) analysis. In A Text Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London, p 380.
54. Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., and Yolke R. H. (1995) Manual of Clinical Microbiology, ASM, Washington, DC, p 6.
55. Londonkar R. L., Kattegouga U. M., Shivsharanappa K., and Hanchinalmath J. V. (2013) Phytochemical screening and in vitro antimicrobial activity of Typha angustifolia Linn leaves extract against pathogenic gram-negative microorganisms. J. Pharm. Res., 6, 280–283. (DOI: https://doi.org/10.1016/j.jopr.2013.02.010).
56. NCCLS (National Committee for Clinical Laboratory Standards) (1997) Performance Standards for Antimicrobial Disc Susceptibility Test, Approved Standard M2-A6, NCCLS, 6th edn, Wayne, Pa, USA.
57. Perez C., Paul M., and Bezique P. (1990) An Antibiotic assay by the agar well diffusion method. Alta. Biomed. Group Experiences, 15, 113.