How to cite this paper
Ramin, N & Asman, S. (2023). Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples.Current Chemistry Letters, 12(3), 623-640.
Refrences
1. Flasiński, M., Gawryś, M., Broniatowski, M., & Wydro, P. (2016). Studies on the interactions between parabens and lipid membrane components in monolayers at the air/aqueous solution interface. Biochim. Biophys. Acta - Biomembr, 1858(4), 836-844.
2. Lincho, J., Martins, R. C., & Gomes, J. (2021). Paraben compounds—Part I: An overview of their characteristics, detection, and impacts. Appl. Sci., 11(5), 2307.
3. Alkafajy, S. A., & Abdul-Jabbar, R. A. (2020). Comprehensive effects of parabens in human physiology. Ann Trop Med Public Health, 23, 23.
4. Hager, E., Chen, J., & Zhao, L. (2022). Minireview: Parabens Exposure and Breast Cancer. Int. J. Environ. Res. Public Health., 19(3), 1873.
5. Cabaleiro, N., De La Calle, I., Bendicho, C., & Lavilla, I. (2014). An overview of sample preparation for the determination of parabens in cosmetics. TrAC - Trends Anal. Chem., 57, 34-46.
6. Khesina, Z. B., Iartsev, S. D., Revelsky, A. I., & Buryak, A. K. (2021). Microextraction by packed sorbent optimized by statistical design of experiment as an approach to increase the sensitivity and selectivity of HPLC-UV determination of parabens in cosmetics. J Pharm Biomed Anal., 195, 113843.
7. Piao, C., Chen, L., & Wang, Y. (2014). A review of the extraction and chromatographic determination methods for the analysis of parabens. J. Chromatogr. B Biomed. Appl., 969, 139-148.
8. Cui, B., Liu, P., Liu, X., Liu, S., & Zhang, Z. (2020). Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol., 9(6), 12568-12584.
9. Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: perspectives and applications. Chem. Soc. Rev., 45(8), 2137-2211.
10. López, A. S., Ramos, M. P., Herrero, R., & Vilariño, J. M. L. (2020). Synthesis of magnetic green nanoparticle–Molecular imprinted polymers with emerging contaminants templates. J. Environ. Chem. Eng., 8(4), 103889.
11. BelBruno, J. J. (2018). Molecularly imprinted polymers. Chem. Rev., 119(1), 94-119.
12. Liu, Y., & Dykstra, G. (2022). Recent progress on electrochemical (bio) sensors based on aptamer-molecularly imprinted polymer dual recognition. Sens. Actuator A Phys., 100112.
13. Tabaraki, R., & Sadeghinejad, N. (2020). Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chem. Pap., 74(6), 1937-1944.
14. Yew, Y. P., Shameli, K., Miyake, M., Khairudin, N. B. B. A., Mohamad, S. E. B., Naiki, T., & Lee, K. X. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem., 13(1), 2287-2308.
15. Macías-Martínez, B. I., Cortés-Hernández, D. A., Zugasti-Cruz, A., Cruz-Ortíz, B. R., & Múzquiz-Ramos, E. M. (2016). Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. J. Appl. Res. Technol., 14(4), 239-244.
16. Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. (2018). Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J. Asian Ceram. Soc., 6(2), 145-155.
17. Basavaiah, K., Kahsay, M. H., & RamaDevi, D. (2018). Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. Emerg. Mater. Res., 1(3), 121-132.
18. Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett., 11(1), 1-7.
19. Sirdeshpande, K. D., Sridhar, A., Cholkar, K. M., & Selvaraj, R. (2018). Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci., 8(4), 675-683.
20. Kanagasubbulakshmi, S., & Kadirvelu, K. (2017). Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J., 2(4), 422-427.
21. Ridzuan, P. M., & Wan Salleh, W. (2019). Persicaria Odorata as a Potential Medicinal Plant-Mini Review. J. nat. ayurvedic med., 3(2), 1-4.
22. Abdul Aris, M. H., Lee, H. Y., Hussain, N., Ghazali, H., Nordin, W. N., & Mahyudin, N. A. (2015). Effect of Vietnamese coriander (Persicaria odorata), turmeric (Curcuma longa) and asam gelugor (Garcinia atroviridis) leaf on the microbiological quality of gulai tempoyak paste. Int. Food Res. J., 22(4).
23. Okonogi, S., Kheawfu, K., Holzer, W., Unger, F. M., Viernstein, H., & Mueller, M. (2016). Anti-inflammatory effects of compounds from Polygonum odoratum. Nat. Prod. Commun., 11(11), 1934578X1601101107.
24. Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 44(16), 5778-5792.
25. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol, 34(7), 588-599.
26. Li, X., & Row, K. H. (2017). Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin. J. Chromatogr. B Biomed. Appl., 1068, 56-63.
27. Liu, Z., Wang, Y., Xu, F., Wei, X., Chen, J., Li, H., ... & Zhou, Y. (2020). A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta, 1129, 49-59.
28. Jablonský, M., Majová, V., Šima, J., Hroboňová, K., & Lomenová, A. (2020). Involvement of deep eutectic solvents in extraction by molecularly imprinted polymers—A minireview. Xtal, 10(3), 217.
29. Lagashetty, A., & Ganiger, S. K. (2019). Synthesis, characterization and antibacterial study of Ag–Au Bi-metallic nanocomposite by bioreduction using piper betle leaf extract. Heliyon, 5(12), e02794.
30. Belachew, N., Devi, D. R., & Basavaiah, K. (2016). Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. J. Mol. Liq., 224, 713-720.
31. Ghasemzadeh, M. A., Abdollahi-Basir, M. H., & Babaei, M. (2015). Fe3O4@ SiO2–NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno [2, 3-b] pyridines in aqueous ethanol media. Green Chem Lett Rev., 8(3-4), 40-49.
32. Chen, D., Han, X., Wang, Q., Xie, L., Ai, Y., Dang, X., ... & Chen, H. (2017). Magnetic molecularly imprinted polymers for selective extraction and determination of naphthols. Mikrochim. Acta, 184(9), 3373-3379.
33. Ma, W., Dai, Y., & Row, K. H. (2018). Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophor., 39(15), 2039-2046.
34. He, Y., Tan, S., Abd EI-Aty, A. M., Hacımüftüoğlu, A., & She, Y. (2019). Magnetic molecularly imprinted polymers for the detection of aminopyralid in milk using dispersive solid-phase extraction. RSC Adv., 9(51), 29998-30006.
35. Pizan-Aquino, C., Wong, A., Aviles-Felix, L., Khan, S., Picasso, G., & Sotomayor, M. D. (2020). Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Mater. Chem. Phys., 245, 122777.
36. Yusoff, M. M., Yahaya, N., Saleh, N. M., & Raoov, M. (2018). A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Adv., 8(45), 25617-25635.
37. Tegegne, B., Chimuka, L., Chandravanshi, B. S., & Zewge, F. (2021). Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment. Sep. Sci. Technol., 56(13), 2217-2231.
38. Omidi, F., Behbahani, M., Sadeghi Abandansari, H., Sedighi, A., & Shahtaheri, S. J. (2014). Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2, 4-dichlorophenoxyacetic acid in the human urine and different water samples. J. Environ. Health Sci. Eng., 12(1), 1-10.
39. Saavedra, L. N. M., Penido, R. G., de Azevedo Santos, L., Ramalho, T. C., Baeta, B. E. L., Pereira, M. C., & da Silva, A. C. (2018). Molecularly imprinted polymers for selective adsorption of quinoline: theoretical and experimental studies. RSC Adv., 8(50), 28775-28786.
40. Beh, S. Y., Mahfut, I. W. B. D., Juber, N. I. B. M., Asman, S., Yusoff, F., & Saleh, N. M. (2021). Extraction of Parabens from Cosmetic and Environmental Water Samples Coupled With UV-Visible Spectroscopy. J. Appl. Spectrosc., 87(6), 1216-1223.
41. You, X., Piao, C., & Chen, L. (2016). Preparation of a magnetic molecularly imprinted polymer by atom‐transfer radical polymerization for the extraction of parabens from fruit juices. J. Sep. Sci., 39(14), 2831-2838.
42. Dhar, P. K., Saha, P., Hasan, M. K., Amin, M. K., & Haque, M. R. (2021). Green synthesis of magnetite nanoparticles using Lathyrus sativus peel extract and evaluation of their catalytic activity. Clean. Eng. Tech., 3, 100117.
43. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Salimi Bani, M., & Azizi, M. (2020). A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci., 55(1), 319-336.
44. Foroughirad, S., Arabzadeh, N., Mohammadi, A., & Khosravi, A. (2018). Synthesis and characterization of novel water-compatible magnetic molecularly imprinted polymer for tartrazine. J. Chin. Adv. Mater. Soc., 6(4), 706-721.
45. Amalia, S., Rafika, N. A., Hardiyanti, S. A., Ashari, A. D., Khabibi, B. W., Iftitah, E. D., ... & Sabarudin, A. (2022). Cobalt (II)-Mediated Molecularly Imprinted Polymer as a Monolithic Stationary Phase for Separation of Racemic Citronellal by Liquid Chromatography. Sci. World J., 2022.
46. Wang, D., Luo, X., Huang, Y., Wang, M., & Xia, Z. (2020). Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation. Microchem. J., 157, 105109.
47. Wang, J., Huyan, Y., Yang, Z., Zhang, H., Zhang, A., Kou, X., ... & Zhang, B. (2019). Preparation of surface protein imprinted thermosensitive polymer monolithic column and its specific adsorption for BSA. Talanta, 200, 526-536.
48. Shahriman, M. S., Zain, N. N. M., Mohamad, S., Manan, N. S. A., Yaman, S. M., Asman, S., & Raoov, M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Adv., 8(58), 33180-33192.
49. Keluo, C., Tingshan, Z., Xiaohui, C., Yingjie, H., & Xing, L. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Pet. Explor. Dev., 45(3), 412–421.
50. Zhang, Y., Shao, D., Yan, J., Jia, X., Li, Y., Yu, P., & Zhang, T. (2016). The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. Nat. Gas Geosci., 1(3), 213-220.
51. Angelov, T., Vlasenko, A., & Tashkov, W. (2007). HPLC determination of pKa of parabens and investigation on their lipophilicity parameters. J. Liq. Chromatogr. Relat., 31(2), 188-197.
52. Noorashikin, M. S., Mohamad, S., & Abas, M. R. (2016). Determination of parabens in water samples by cloud point extraction and aqueous two-phase extraction using high-performance liquid chromatography. Desalination Water Treat., 57(47), 22353-22361.
53. Sohaimi, N. M., Saleh, N. M., Ariffin, M. M., Beh, S. Y., & Ahmad, R. (2018). An environmentally friendly method for extraction of parabens in various samples using low viscosity and low cloud point temperature surfactant. Malaysian J. Anal. Sci., 22(3), 365-374.
54. Asman, S., Mohamad, S., & Sarih, N. M. (2016). Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers. J. Mol. Liq., 214, 59-69.
55. Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl., 2018.
56. Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2018). Modelling of adsorption kinetic processes—errors, theory and application. Adsorp Sci Technol., 1-19.
57. Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res., 120, 88-116.
58. Al-Ghouti, M. A., & Da'ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, 122383.
59. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. J. Chem., 2017.
60. Kecili, R., & Hussain, C. M. (2018). Mechanism of adsorption on nanomaterials. In Nanomaterials in Chromatography. Elsevier. (pp. 89-115).
61. Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In Nanomaterials for the detection and removal of wastewater pollutant. Elsevier. (pp. 161-222).
62. Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind., 15, 14-27.
63. Húmpola, P. D., Odetti, H. S., Fertitta, A. E., & Vicente, J. L. (2013). Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. J. Chil. Chem. Soc., 58(1), 1541-1544.
64. Egbosiuba, T. C., Abdulkareem, A. S., Kovo, A. S., Afolabi, E. A., Tijani, J. O., Auta, M., & Roos, W. D. (2020). Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics. Chem. Eng. Res. Des., 153, 315-336.
65. Qin, D., Wang, J., Ge, C., & Lian, Z. (2019). Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Mikrochim. Acta., 186(7), 1-10.
66. Ye, N., Shi, P., Li, J., & Wang, Q. (2013). Application of graphene as solid phase extraction absorbent for the determination of parabens in cosmetic products by capillary electrophoresis. Anal. Lett., 46(13), 1991-2000.
67. Xue, Y., Chen, N., Luo, C., Wang, X., & Sun, C. (2013). Simultaneous determination of seven preservatives in cosmetics by dispersive liquid–liquid microextraction coupled with high performance capillary electrophoresis. Anal. Methods, 5(9), 2391-2397.
68. Gao, X., Xu, K., Chi, M., Li, J., Suo, L., Zhu, L., ... & Mu, J. (2021). Determination of four parabens in cosmetics by high-performance liquid chromatography with magnetic solid-phase and ionic dispersive liquid–liquid extraction. Rev. Anal. Chem., 40(1), 161-172.
2. Lincho, J., Martins, R. C., & Gomes, J. (2021). Paraben compounds—Part I: An overview of their characteristics, detection, and impacts. Appl. Sci., 11(5), 2307.
3. Alkafajy, S. A., & Abdul-Jabbar, R. A. (2020). Comprehensive effects of parabens in human physiology. Ann Trop Med Public Health, 23, 23.
4. Hager, E., Chen, J., & Zhao, L. (2022). Minireview: Parabens Exposure and Breast Cancer. Int. J. Environ. Res. Public Health., 19(3), 1873.
5. Cabaleiro, N., De La Calle, I., Bendicho, C., & Lavilla, I. (2014). An overview of sample preparation for the determination of parabens in cosmetics. TrAC - Trends Anal. Chem., 57, 34-46.
6. Khesina, Z. B., Iartsev, S. D., Revelsky, A. I., & Buryak, A. K. (2021). Microextraction by packed sorbent optimized by statistical design of experiment as an approach to increase the sensitivity and selectivity of HPLC-UV determination of parabens in cosmetics. J Pharm Biomed Anal., 195, 113843.
7. Piao, C., Chen, L., & Wang, Y. (2014). A review of the extraction and chromatographic determination methods for the analysis of parabens. J. Chromatogr. B Biomed. Appl., 969, 139-148.
8. Cui, B., Liu, P., Liu, X., Liu, S., & Zhang, Z. (2020). Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol., 9(6), 12568-12584.
9. Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: perspectives and applications. Chem. Soc. Rev., 45(8), 2137-2211.
10. López, A. S., Ramos, M. P., Herrero, R., & Vilariño, J. M. L. (2020). Synthesis of magnetic green nanoparticle–Molecular imprinted polymers with emerging contaminants templates. J. Environ. Chem. Eng., 8(4), 103889.
11. BelBruno, J. J. (2018). Molecularly imprinted polymers. Chem. Rev., 119(1), 94-119.
12. Liu, Y., & Dykstra, G. (2022). Recent progress on electrochemical (bio) sensors based on aptamer-molecularly imprinted polymer dual recognition. Sens. Actuator A Phys., 100112.
13. Tabaraki, R., & Sadeghinejad, N. (2020). Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chem. Pap., 74(6), 1937-1944.
14. Yew, Y. P., Shameli, K., Miyake, M., Khairudin, N. B. B. A., Mohamad, S. E. B., Naiki, T., & Lee, K. X. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem., 13(1), 2287-2308.
15. Macías-Martínez, B. I., Cortés-Hernández, D. A., Zugasti-Cruz, A., Cruz-Ortíz, B. R., & Múzquiz-Ramos, E. M. (2016). Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. J. Appl. Res. Technol., 14(4), 239-244.
16. Ramesh, A. V., Rama Devi, D., Mohan Botsa, S., & Basavaiah, K. (2018). Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J. Asian Ceram. Soc., 6(2), 145-155.
17. Basavaiah, K., Kahsay, M. H., & RamaDevi, D. (2018). Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. Emerg. Mater. Res., 1(3), 121-132.
18. Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett., 11(1), 1-7.
19. Sirdeshpande, K. D., Sridhar, A., Cholkar, K. M., & Selvaraj, R. (2018). Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci., 8(4), 675-683.
20. Kanagasubbulakshmi, S., & Kadirvelu, K. (2017). Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J., 2(4), 422-427.
21. Ridzuan, P. M., & Wan Salleh, W. (2019). Persicaria Odorata as a Potential Medicinal Plant-Mini Review. J. nat. ayurvedic med., 3(2), 1-4.
22. Abdul Aris, M. H., Lee, H. Y., Hussain, N., Ghazali, H., Nordin, W. N., & Mahyudin, N. A. (2015). Effect of Vietnamese coriander (Persicaria odorata), turmeric (Curcuma longa) and asam gelugor (Garcinia atroviridis) leaf on the microbiological quality of gulai tempoyak paste. Int. Food Res. J., 22(4).
23. Okonogi, S., Kheawfu, K., Holzer, W., Unger, F. M., Viernstein, H., & Mueller, M. (2016). Anti-inflammatory effects of compounds from Polygonum odoratum. Nat. Prod. Commun., 11(11), 1934578X1601101107.
24. Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chem. Soc. Rev., 44(16), 5778-5792.
25. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol, 34(7), 588-599.
26. Li, X., & Row, K. H. (2017). Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin. J. Chromatogr. B Biomed. Appl., 1068, 56-63.
27. Liu, Z., Wang, Y., Xu, F., Wei, X., Chen, J., Li, H., ... & Zhou, Y. (2020). A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal. Chim. Acta, 1129, 49-59.
28. Jablonský, M., Majová, V., Šima, J., Hroboňová, K., & Lomenová, A. (2020). Involvement of deep eutectic solvents in extraction by molecularly imprinted polymers—A minireview. Xtal, 10(3), 217.
29. Lagashetty, A., & Ganiger, S. K. (2019). Synthesis, characterization and antibacterial study of Ag–Au Bi-metallic nanocomposite by bioreduction using piper betle leaf extract. Heliyon, 5(12), e02794.
30. Belachew, N., Devi, D. R., & Basavaiah, K. (2016). Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. J. Mol. Liq., 224, 713-720.
31. Ghasemzadeh, M. A., Abdollahi-Basir, M. H., & Babaei, M. (2015). Fe3O4@ SiO2–NH2 core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno [2, 3-b] pyridines in aqueous ethanol media. Green Chem Lett Rev., 8(3-4), 40-49.
32. Chen, D., Han, X., Wang, Q., Xie, L., Ai, Y., Dang, X., ... & Chen, H. (2017). Magnetic molecularly imprinted polymers for selective extraction and determination of naphthols. Mikrochim. Acta, 184(9), 3373-3379.
33. Ma, W., Dai, Y., & Row, K. H. (2018). Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea. Electrophor., 39(15), 2039-2046.
34. He, Y., Tan, S., Abd EI-Aty, A. M., Hacımüftüoğlu, A., & She, Y. (2019). Magnetic molecularly imprinted polymers for the detection of aminopyralid in milk using dispersive solid-phase extraction. RSC Adv., 9(51), 29998-30006.
35. Pizan-Aquino, C., Wong, A., Aviles-Felix, L., Khan, S., Picasso, G., & Sotomayor, M. D. (2020). Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Mater. Chem. Phys., 245, 122777.
36. Yusoff, M. M., Yahaya, N., Saleh, N. M., & Raoov, M. (2018). A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Adv., 8(45), 25617-25635.
37. Tegegne, B., Chimuka, L., Chandravanshi, B. S., & Zewge, F. (2021). Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment. Sep. Sci. Technol., 56(13), 2217-2231.
38. Omidi, F., Behbahani, M., Sadeghi Abandansari, H., Sedighi, A., & Shahtaheri, S. J. (2014). Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2, 4-dichlorophenoxyacetic acid in the human urine and different water samples. J. Environ. Health Sci. Eng., 12(1), 1-10.
39. Saavedra, L. N. M., Penido, R. G., de Azevedo Santos, L., Ramalho, T. C., Baeta, B. E. L., Pereira, M. C., & da Silva, A. C. (2018). Molecularly imprinted polymers for selective adsorption of quinoline: theoretical and experimental studies. RSC Adv., 8(50), 28775-28786.
40. Beh, S. Y., Mahfut, I. W. B. D., Juber, N. I. B. M., Asman, S., Yusoff, F., & Saleh, N. M. (2021). Extraction of Parabens from Cosmetic and Environmental Water Samples Coupled With UV-Visible Spectroscopy. J. Appl. Spectrosc., 87(6), 1216-1223.
41. You, X., Piao, C., & Chen, L. (2016). Preparation of a magnetic molecularly imprinted polymer by atom‐transfer radical polymerization for the extraction of parabens from fruit juices. J. Sep. Sci., 39(14), 2831-2838.
42. Dhar, P. K., Saha, P., Hasan, M. K., Amin, M. K., & Haque, M. R. (2021). Green synthesis of magnetite nanoparticles using Lathyrus sativus peel extract and evaluation of their catalytic activity. Clean. Eng. Tech., 3, 100117.
43. Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Salimi Bani, M., & Azizi, M. (2020). A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci., 55(1), 319-336.
44. Foroughirad, S., Arabzadeh, N., Mohammadi, A., & Khosravi, A. (2018). Synthesis and characterization of novel water-compatible magnetic molecularly imprinted polymer for tartrazine. J. Chin. Adv. Mater. Soc., 6(4), 706-721.
45. Amalia, S., Rafika, N. A., Hardiyanti, S. A., Ashari, A. D., Khabibi, B. W., Iftitah, E. D., ... & Sabarudin, A. (2022). Cobalt (II)-Mediated Molecularly Imprinted Polymer as a Monolithic Stationary Phase for Separation of Racemic Citronellal by Liquid Chromatography. Sci. World J., 2022.
46. Wang, D., Luo, X., Huang, Y., Wang, M., & Xia, Z. (2020). Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation. Microchem. J., 157, 105109.
47. Wang, J., Huyan, Y., Yang, Z., Zhang, H., Zhang, A., Kou, X., ... & Zhang, B. (2019). Preparation of surface protein imprinted thermosensitive polymer monolithic column and its specific adsorption for BSA. Talanta, 200, 526-536.
48. Shahriman, M. S., Zain, N. N. M., Mohamad, S., Manan, N. S. A., Yaman, S. M., Asman, S., & Raoov, M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Adv., 8(58), 33180-33192.
49. Keluo, C., Tingshan, Z., Xiaohui, C., Yingjie, H., & Xing, L. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Pet. Explor. Dev., 45(3), 412–421.
50. Zhang, Y., Shao, D., Yan, J., Jia, X., Li, Y., Yu, P., & Zhang, T. (2016). The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. Nat. Gas Geosci., 1(3), 213-220.
51. Angelov, T., Vlasenko, A., & Tashkov, W. (2007). HPLC determination of pKa of parabens and investigation on their lipophilicity parameters. J. Liq. Chromatogr. Relat., 31(2), 188-197.
52. Noorashikin, M. S., Mohamad, S., & Abas, M. R. (2016). Determination of parabens in water samples by cloud point extraction and aqueous two-phase extraction using high-performance liquid chromatography. Desalination Water Treat., 57(47), 22353-22361.
53. Sohaimi, N. M., Saleh, N. M., Ariffin, M. M., Beh, S. Y., & Ahmad, R. (2018). An environmentally friendly method for extraction of parabens in various samples using low viscosity and low cloud point temperature surfactant. Malaysian J. Anal. Sci., 22(3), 365-374.
54. Asman, S., Mohamad, S., & Sarih, N. M. (2016). Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers. J. Mol. Liq., 214, 59-69.
55. Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl., 2018.
56. Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2018). Modelling of adsorption kinetic processes—errors, theory and application. Adsorp Sci Technol., 1-19.
57. Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res., 120, 88-116.
58. Al-Ghouti, M. A., & Da'ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, 122383.
59. Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. J. Chem., 2017.
60. Kecili, R., & Hussain, C. M. (2018). Mechanism of adsorption on nanomaterials. In Nanomaterials in Chromatography. Elsevier. (pp. 89-115).
61. Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. In Nanomaterials for the detection and removal of wastewater pollutant. Elsevier. (pp. 161-222).
62. Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind., 15, 14-27.
63. Húmpola, P. D., Odetti, H. S., Fertitta, A. E., & Vicente, J. L. (2013). Thermodynamic analysis of adsorption models of phenol in liquid phase on different activated carbons. J. Chil. Chem. Soc., 58(1), 1541-1544.
64. Egbosiuba, T. C., Abdulkareem, A. S., Kovo, A. S., Afolabi, E. A., Tijani, J. O., Auta, M., & Roos, W. D. (2020). Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics. Chem. Eng. Res. Des., 153, 315-336.
65. Qin, D., Wang, J., Ge, C., & Lian, Z. (2019). Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Mikrochim. Acta., 186(7), 1-10.
66. Ye, N., Shi, P., Li, J., & Wang, Q. (2013). Application of graphene as solid phase extraction absorbent for the determination of parabens in cosmetic products by capillary electrophoresis. Anal. Lett., 46(13), 1991-2000.
67. Xue, Y., Chen, N., Luo, C., Wang, X., & Sun, C. (2013). Simultaneous determination of seven preservatives in cosmetics by dispersive liquid–liquid microextraction coupled with high performance capillary electrophoresis. Anal. Methods, 5(9), 2391-2397.
68. Gao, X., Xu, K., Chi, M., Li, J., Suo, L., Zhu, L., ... & Mu, J. (2021). Determination of four parabens in cosmetics by high-performance liquid chromatography with magnetic solid-phase and ionic dispersive liquid–liquid extraction. Rev. Anal. Chem., 40(1), 161-172.