How to cite this paper
Chukka, V., Ramana, V., P, R & Babu, H. (2023). Evaluation of methyl red removal potential of adsorbents made from Leucaena leucocephala leaf and bark materials.Current Chemistry Letters, 12(1), 227-234.
Refrences
1. Naje A.S., Chelliapan S., Zakaria Z., Ajeel M.A., and Alaba P.A. (2017) A review of electrocoagulation technology for the treatment of textile wastewater. Rev. Chem. Eng., 33 (3) 263-292.
2. Verma A.K., Dash R.R., and Bhunia P. (2012) review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93 (1) 154-168.
3. Srinivasan A, and Viraraghavan T. (2010) Decolorization of dye wastewaters by biosorbents: a review. J. Environ. Manage., 91 (10) 1915-1929.
4. Saleh T.A., and Al-Absi A.A. (2017) Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions. J. Mol. Liq., 248, 577–585.
5. Ahmad M.A., Ahmad N., and Bello O.S. (2015) Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions. Appl. Water Sci., 5, 407–423.
6. Ahmad M.A., Ahmed N.A.B., Adegoke K.A., and Bello O.S. (2019) Sorption studies of methyl red dye removal using lemon grass (Cymbopogoncitratus). Chem. Data Collect., 22 (2019) 100249.
7. Wong S., Ghafar N.A., Ngadi. N., Razmi F.A., Inuwa I.M., Mat R., and Amin N.A.S. (2020) Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep., 10 (1) 2928.
8. Ledakowicz S., and Paździor K. (2021) Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules., 26 (4) 870.
9. Paz A., Carballo J., Pérez M.J., and Domínguez J.M. (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere., 181, 168-177.
10. Kadhim R.J., Al-Ani F.H., Al-Shaeli M., Alsalhy Q.F., and Figoli A. (2020) Removal of dyes using graphene oxide (GO) mixed matrix membranes. Membranes (Basel)., 10 (12) 366.
11. Piaskowski K., Świderska-Dąbrowska R., and Zarzycki P.K. (2018) Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC. Int., 101 (5) 1371-1384.
12. Wong S., Ghafar N.A., and Ngadi N. (2020) Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep., 10, 2928.
13. Zhou Y., Lu J., Zhou Y., and Liu Y. (2019) Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut., 252 (Pt A) 352-365.
14. Dokrak M., Prateep D., Utis K., and Sarawood S. (2012) The influences of an invasive plant species (leucaena leucocephala) on tree regeneration in khao phuluang forest, Northeastern Thailand. Kasetsart J. Nat. Sci., 46 (1) 39-50.
15. De Angelis A., Gasco L., Parisi G., and Danieli P.P. (2021) A multipurpose leguminous plant for the mediterranean countries: leucaena leucocephala as an alternative protein source: A Review. Animals (Basel)., 11 (8) 2230.
16. Zayed M. Z., Sallam S. M. A., and Shetta N. D. (2018) Review article on leucaena leucocephala as one of the miracle timber trees. Int. J. Phar. Pharma. Sci., 10 (1) 1-7.
17. Zayed M. Z., Wu A., and Sallam S. (2019) Comparative phytochemical constituents of Leucaena leucocephala (Lam.) leaves, fruits, stem barks, and wood branches grown in Egypt using GC-MS method coupled with multivariate statistical approaches. Bio. Res., 14 (1) 996-1013.
18. Umaru I.J., Samling B., and Umaru H.A. (2018) Phytochemical screening of Leucaena leucocephala leaf essential oil and its antibacterial potentials. MOJ Drug Des. Develop. Ther., 2 (6) 224-228.
19. Mohamed Z.Z. (2016) Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. Int. J. Phar. Pharma. Sci., 8 (12) 174-179.
20. Mosoarca G., Vancea C., Popa S., Marious G., and Sorina B. (2020) Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: isotherms, kinetics, thermodynamic and optimization by Taguchi method. Sci. Rep., 10, 17676.
21. Khodabandehloo A., Rahbar-Kelishami A., and Shayesteh H. (2017) Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies. J. Mol. Liq., 244, 540–548.
22. Han X., Wang W., and Ma X. (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem. Eng. J., 171 (1) 1-8.
23. Song J., Zou W., Bian Y., Su F., and Han R. (2011) Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination., 265 (1-3) 119-125.
24. Sunil R., Virendra K.S., Avdesh S.P., Mohit N., and Kuldeep R. (2021) Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Curr. Opin. Green Sustain. Chem., 4, 100180.
25. Krishna B.D., Mahesh B., and Puspa L.H. (2020) Adsorptive removal of methyl red from aqueous solution using Charred and Xanthated Sal (Shorea robusta) Sawdust. Amrit Res. J., 1 (1) 37-44.
26. Pengzhi X., Chao D., Longjiang L., and Yao H. (2020) Study on the adsorption of methyl red by bentonite / chitosan composites. IOP Conf. Series: Mat. Sci. Eng., 782, 022079.
27. Vatsal S. (2017) Removal of methyl red from waste water using orange peels. Int. J. Sci. Res. Dev., 5 (3) 358-360.
28. Noha A.M., Ehssan N., and Mohamed H. (2020) Use of spent oil shale to remove methyl red dye from aqueous solutions. AIMS Mat. Sci., 7 (3) 338-353.
29. Aksu Z., and Donmez D. (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere., 50 (8), 1075-1083.
30. Khattri S.D., and Singh M.K. (2009) Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater., 167 (1–3), 1089-1094.
31. Santhi T., Manonmani S., and Smitha T. (2010) Removal of methyl red from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption. Chem. Eng. Res. Bull., 14 (1) 11–18.
32. Chukka V.K.K.S., Kokkiligadda V. R., and Bollikolla H.B. (2022). Removal of methyl dye effectively using sorbents obtained from bark and leaf of Erythrina Indica: Carib. J. Sci. Tech., 10 (1) 20–27.
33. Ramana K.V., Swarna Latha K., Ravindranath K., and Hari Babu B. (2017) Methyl red dye removal using new bio-sorbents derived from Hyacinth and Tinospora cordifolia plants from waste waters. Rasayan J. Chem., 10 (2), 349-362.
34. Jain R., and Sikarwar S. (2008) Removal of hazardous dye congored from waste material. J. Hazard. Mater., 152 (3) 942-948.
35. Srivastava R., and Rupainwar D. C. (2011) A comparative evaluation for adsorption of dye on neem tree bark powder and mango tree bark powder. Indian J. Chem. Tech., 18 (1) 67-75.
36. Mas Rosemal H.M.H., and Kathiresan S. (2009) The removal of methyl red from aqueous solutions using banana pseudostem fibers. American J. Appl. Sci., 6 (9) 1690-1700.
37. Munir M., Nazar M. F., Zafar M. N., Zubair M., Ashfaq M., Hosseini-Bandegharaei A., Khan S.U., and Ahmad A. (2020) Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified brown clay. ACS Omega., 5 (27) 16711–16721.
38. Sintakindi A., and Ankamwar B. (2020) Uptake of methylene blue from aqueous solution by naturally grown daedalea africana and phellinus adamantinus fungi. ACS Omega., 5 (22), 12905–12914.
39. Noha A.M., Ehssan N., and Mohamed H. (2020) Use of spent oil shale to remove methyl red dye from aqueous solutions. AIMS Mat. Sci., 7 (3) 338-353.
40. Ahmed F.S., Mostafa S., Mahmoud S.T., Adel M.K.E.D., Reda H., and Mostafa A. (2021) A facile method for preparation and evaluation of the antimicrobial efficiency of various heterocycles containing thieno [2,3-d]pyrimidine. Syn. Commun., 51 (3) 398-409.
41. Zaki R.M., Adel M.K.E.D., Shaban M., and Ahmed F.S. (2019) Efficient synthesis, reactions and spectral characterization of pyrazolo[4’,3’:4,5]thieno[3,2-d] pyrimidines and related heterocycles. Heterocycl. Commun., 25 (1) 39-46.
42. Ahmed F.S., Zaki R.M., Adel M.K.E.D., and Radwan SM. (2020) Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno[2,3-c]pyrazole-5-carboxamide. J. Heterocyclic. Chem., 57, 238– 247.
43. Islam A.A., El-Tohamya S.A., Abdul-Malikb M.A., Abdel-Raheema S.A.A., and El-Darsc F.M.S. (2022) A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr. Chem. Lett., 11 (1) 43–62.
44. Abdel-Raheem S.A.A., El-Dean A.M.K., Abdul-Malik M.A., Reda H., El-Sayed M.E.A., Abd-Ella A.A., Sameh A.Z., and Mahmoud S.T. (2022) Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11 (1), 23-28.
45. Mahmoud S.T., El-Deanb A.M.K., Mostafa A., Reda H., Mostafa S., Remon MZ., Shaaban K.M., Sameh A.Z., and Abdel-Raheemf S.A.A. (2022) Synthesis, reactions, and applications of pyrimidine derivatives. Curr. Chem. Lett., 2022, 11 (1) 121–138.
46. Ahmed F.S., El‐Dean A.M.K., Shaban M.R., and Remon M.Z. (2020) Synthesis, spectroscopic characterization, and in vitro antimicrobial activity of fused pyrazolo[4′,3′:4,5]thieno[3,2‐d]pyrimidine. J. Chinese Chem. Soc., 67 (7) 1239-1246.