How to cite this paper
Goel, A & Rani, M. (2023). Synthesis and catalytic activity of Cu (II) complex with 4-phenyl 2, 6-di (thiazol-2-yl) pyridine in the oxidation of para-aminophenol.Current Chemistry Letters, 12(1), 193-202.
Refrences
1. Goel, A., & Choudhary, M. (2018) Highly dispersed PVP-supported Ir–Ni bimetallic nanoparticles as high performance catalyst for degradation of metanil yellow. Bull. Mater. Sci., 41, 81,1-8.
2. Punniyamurthy, T., Velusamy, S., and Iqbal, J. (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev., 105, 23-29.
3. Podder, N., & Mandal, S. (2020) Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(ii) complexes: phenoxazinone synthase-like activity and mechanistic study. New J. Chem., 44(29), 12793-12805.
4. Kadafour, A. N., &Bala, M. D. (2022) Structural characterization of a square planar Ni(II) complex and its application as a catalyst for the transfer hydrogenation of ketones. J. Coord. Chem., 74(17-20), 2886-2897.
5. Mukherjee, S., Roy, S., Mukherjee, S., & Biswas, B. (2020) Oxidative dimerisation of 2-aminophenol by a copper(II) complex: Synthesis, non-covalent interactions and bio-mimics of phenoxazinone synthase activity. J. Mol. Struct., 1217, 128348.
6. Goel, A., & Shikha, (2022) Catalytic method for the degradation and decolorization of azo dye using polyvinylpyrrolidone stabilized iridium-nickel bimetallic nanocrystals. Environ. Qual Manage., 1–931(4), 315-323.
7. Puiu, M., &Oancea, D. (2004) Copper (II) catalyzed oxidation of 2-aminophenol in aqueous medium. Chimie, 1, 263-268.
8. Xu, H., Duan, C. F., Zhang, Z. F., Chen, J. Y., Lai, C. Z., Lian, M., Liu, L. J., & Cui, H. (2005) Flow injection determination of p-aminophenol at trace level using inhibited luminol–dimethylsulfoxide–NaOH–EDTA chemiluminescence. Water Res., 39, 396-402.
9. Szávuly, M., Csonka, R., Speier, G., Barabás, R., Giorgi, M., &Kaizer, J. (2014) Oxidation of 2-aminophenol by iron(III) isoindoline complexes. J. Mol. Cat. A: Chem., 392, 120-126.
10. de Souza, J. C., da Silva, B. F., Morales, D. A., de AragãoUmbuzeiro, G., &Zanoni, M. V. B. (2020) Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. Hazard. Mat., 387, 122000.
11. Khan, S. A., Hamayun, M., & Ahmed, S. (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb. Technol., 38(1-2), 10-13.
12. Benavente, R., Lopez-Tejedor, D., Perez-Rizquez, C., &Palomo, J.M. (2018) Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules, 23(9), 2166-2178.
13. de Souza, J.C., Zanoni, M.V.B., & Oliveira-Brett, A.M., J. (2020) Genotoxic permanent hair dye precursors p-aminophenol and p-toluenediamine electrochemical oxidation mechanisms and evaluation in biological fluids. Electroanal. Chem., 857, 113509. https://doi.org/10.1016/j.jelechem.2019.113509
14. Corbett, J. F. (1999) An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes. Dyes Pigm., 41, 127-136.
15. Beiginejad, H., Nematollahi, D., &Varmaghani, F. (2012) Electrochemical oxidation of some aminophenols in various pHs. J. Electrochem. Soc., 160(1), 41.
16. Li, L., Du, K., Wang, Y., Jia, H., Hou, X., Chao, H., & Ji, L. (2013) Self-activating nuclease and anticancer activities of copper(II) complexes with aryl-modified 2,6-di(thiazol-2-yl)pyridine. Dalton Trans., 42, 11576-11589.
17. Shah, M.J., Tolgyesi, W.S., & Britt, A.D. (1972) Cooxidation of p-phenylenediamine and resorcinol in hair dyes. J. Soc. Cosmet. Chem, 23, 853-861.
18. Nandiyanto, A.B.D., Oktiani, R., &Ragadhita, R. (2019) How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol., 4(1), 97-118.
19. de Souza, J.C., da Silva, B.F., Morales, D.A., Umbuzeiro, G.D., &Zanoni, M.V. (2019) Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. hazard. Mater., 387, 122000.
20. Goel A., Lasyal R., & Abhilasha (2016) Mechanistic insight, into oxidative degradation of some azo dyes with kinetic and thermodynamic analysis. J. Indian Chem. Soc., 93(6), 621-625.
2. Punniyamurthy, T., Velusamy, S., and Iqbal, J. (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev., 105, 23-29.
3. Podder, N., & Mandal, S. (2020) Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(ii) complexes: phenoxazinone synthase-like activity and mechanistic study. New J. Chem., 44(29), 12793-12805.
4. Kadafour, A. N., &Bala, M. D. (2022) Structural characterization of a square planar Ni(II) complex and its application as a catalyst for the transfer hydrogenation of ketones. J. Coord. Chem., 74(17-20), 2886-2897.
5. Mukherjee, S., Roy, S., Mukherjee, S., & Biswas, B. (2020) Oxidative dimerisation of 2-aminophenol by a copper(II) complex: Synthesis, non-covalent interactions and bio-mimics of phenoxazinone synthase activity. J. Mol. Struct., 1217, 128348.
6. Goel, A., & Shikha, (2022) Catalytic method for the degradation and decolorization of azo dye using polyvinylpyrrolidone stabilized iridium-nickel bimetallic nanocrystals. Environ. Qual Manage., 1–931(4), 315-323.
7. Puiu, M., &Oancea, D. (2004) Copper (II) catalyzed oxidation of 2-aminophenol in aqueous medium. Chimie, 1, 263-268.
8. Xu, H., Duan, C. F., Zhang, Z. F., Chen, J. Y., Lai, C. Z., Lian, M., Liu, L. J., & Cui, H. (2005) Flow injection determination of p-aminophenol at trace level using inhibited luminol–dimethylsulfoxide–NaOH–EDTA chemiluminescence. Water Res., 39, 396-402.
9. Szávuly, M., Csonka, R., Speier, G., Barabás, R., Giorgi, M., &Kaizer, J. (2014) Oxidation of 2-aminophenol by iron(III) isoindoline complexes. J. Mol. Cat. A: Chem., 392, 120-126.
10. de Souza, J. C., da Silva, B. F., Morales, D. A., de AragãoUmbuzeiro, G., &Zanoni, M. V. B. (2020) Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. Hazard. Mat., 387, 122000.
11. Khan, S. A., Hamayun, M., & Ahmed, S. (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb. Technol., 38(1-2), 10-13.
12. Benavente, R., Lopez-Tejedor, D., Perez-Rizquez, C., &Palomo, J.M. (2018) Ultra-Fast Degradation of p-Aminophenol by a Nanostructured Iron Catalyst. Molecules, 23(9), 2166-2178.
13. de Souza, J.C., Zanoni, M.V.B., & Oliveira-Brett, A.M., J. (2020) Genotoxic permanent hair dye precursors p-aminophenol and p-toluenediamine electrochemical oxidation mechanisms and evaluation in biological fluids. Electroanal. Chem., 857, 113509. https://doi.org/10.1016/j.jelechem.2019.113509
14. Corbett, J. F. (1999) An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes. Dyes Pigm., 41, 127-136.
15. Beiginejad, H., Nematollahi, D., &Varmaghani, F. (2012) Electrochemical oxidation of some aminophenols in various pHs. J. Electrochem. Soc., 160(1), 41.
16. Li, L., Du, K., Wang, Y., Jia, H., Hou, X., Chao, H., & Ji, L. (2013) Self-activating nuclease and anticancer activities of copper(II) complexes with aryl-modified 2,6-di(thiazol-2-yl)pyridine. Dalton Trans., 42, 11576-11589.
17. Shah, M.J., Tolgyesi, W.S., & Britt, A.D. (1972) Cooxidation of p-phenylenediamine and resorcinol in hair dyes. J. Soc. Cosmet. Chem, 23, 853-861.
18. Nandiyanto, A.B.D., Oktiani, R., &Ragadhita, R. (2019) How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol., 4(1), 97-118.
19. de Souza, J.C., da Silva, B.F., Morales, D.A., Umbuzeiro, G.D., &Zanoni, M.V. (2019) Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. hazard. Mater., 387, 122000.
20. Goel A., Lasyal R., & Abhilasha (2016) Mechanistic insight, into oxidative degradation of some azo dyes with kinetic and thermodynamic analysis. J. Indian Chem. Soc., 93(6), 621-625.