How to cite this paper
Ahmed, A., Mohamed, S & Abdel-Raheem, S. (2022). Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm.Current Chemistry Letters, 11(4), 359-370.
Refrences
1. Sharan S., Zanghelini G., Zotzel J., Bonerz D., Aschoff J., Saint‐Eve A., and Maillard M. N. (2021) Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf., 20 (1) 401-428.
2. Kumari S. G., and Van Leur J. A. G. (2011) Viral diseases infecting faba bean (Vicia faba L.). Grain legumes, 56 24-26.
3. Li X., and Yang Y. (2014) A novel perspective on seed yield of broad bean (Vicia faba L.): differences resulting from pod characteristics. Sci. Rep., 4 (1) 1-6
4. Nadal S., Suso M. J., and Moreno M. T. (2003) Management of Vicia faba genetic resources: changes associated to the selfing process in the major, equina and minor groups. Genet. Resour. Crop Evol., 50 (2) 183-192.
5. Hauggaard-Nielsen H., Mundus S., and Jensen E. S. (2009) Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops. Nutr. Cycl. Agroecosystems, 84 (3) 281-291.
6. Crépon K., Marget P., Peyronnet C., Carrouée B., Arese P., and Duc G. (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res., 115 (3) 329-339.
7. Hacıseferoǧulları H., Gezer İ. B. R. A. H. İ. M., Bahtiyarca Y. C. H. O., and Mengeş H. O. (2003) Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major). J. Food Eng., 60 (4) 475-479.
8. Carrillo-Perdomo E., Vidal A., Kreplak J., Duborjal H., Leveugle M., Duarte J., Desmetz C., Deulvot C., Raffiot B., Marget P., Tayeh N., Pichon J., Falque M., Martin O., Burstin J., and Aubert G. (2020) Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci. Rep., 10(1) 1-14.
9. Köpke U., and Nemecek T. (2010) Ecological services of faba bean. Field Crop Res., 115 (3) 217-233.
10. (a) Sharan S., Zanghelini G., Zotzel J., Bonerz D., Aschoff J., Saint‐Eve A., and Maillard M. N. (2021) Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf., 20(1) 401-428, (b) Sabah A. M. and, Somaya M. M. (2001) Diallel analysis of some yield and technological characters among four faba bean genotypes with their crosses. Annals Agric. Sci., 39 (1) 65-75, (c) Karamanos A. J., Papadouls G., Avgoulas C. E., and Papastylianou P. (1994) Chemical composition of seeds of 11 field bean cultivars in two cultivation periods. FABIS Newsletter, 34/35 39-47.
11. de Faria L. C., Melo P. G. S., Pereira H. S., Del Peloso M. J., Brás A. J. B. P., Moreira J. A. A., de Carvalho H. W. L., and Melo L. C. (2013) Genetic progress during 22 years of improvement of carioca-type common bean in Brazil. Field Crops Res., 142 68-74.
12. Melo L. C., Peloso M. J. D., Pereira H. S., Faria L. C. D., Costa J. G. C. D., Díaz J. L. C., Rava C. A., Wendland A., Abreu A. D. B., and Abreu Â. D. F. B. (2010) BRS Estilo: common bean cultivar with Carioca grain, upright growth and high yield potential. Crop Breed. Appl. Biotechnol., 10 377-379.
13. Nielsen K. L., Eshel A., and Lynch J. P. (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J. Exp. Bot., 52 (355) 329-339.
14. Furlani Â. M. C., Furlani P. R., Tanaka R. T., Mascarenhas H. A. A., and Delgado M. D. D. P. (2002) Variability of soybean germplasm in relation to phosphorus uptake and use efficiency. Sci. Agric., 59 (3) 529-536.
15. Escribano M. R., Santalla M., and De Ron A. M. (1997) Genetic diversity in pod and seed quality traits of common bean populations from northwestern Spain. Euphytica, 93 (1) 71-81.
16. Lemos L. B., Oliveira R. S. D., Palomino E. C., and Silva T. R. B. D. (2004) Agronomic and technologic characteristics of common bean genotypes from Carioca commercial group. Pesqui. Agropecu. Bras., 39 319-326.
17. Reyes‐Moreno C., Paredes‐López O., and Gonzalez E. (1993) Hard‐to‐cook phenomenon in common beans—A review. Crit. Rev. Food Sci. Nutr., 33 (3) 227-286.
18. Zilio M., Souza A. C., Coelho M. C., and Jose D. (2014) The genotype and crop environment affect the technological quality of common beans grains. Am.-Eurasian j. agric. environ. sci., 14 (3) 212-220.
19. de Barros M., and Prudencio S. H. (2016) Physical and chemical characteristics of common bean varieties. Semina:Cienc. Agrar., 37 (2) 751-761.
20. El‐Moniem G. M. A. (1999) Sensory evaluation and in vitro protein digestibility of mung bean as affected by cooking time. J. Sci. Food Agric., 79 (14) 2025-2028.
21. AOAC (2003) Official methods of analysis of AOAC International. 17thedition, Association of the Official Analytical Chemists, Gaithersburg, MD, USA.
22. Fahmy H.M.,Srivastava S., and Uebersax M.A. (1996) Physical and textural characteristics of soaked and cooked American Common Beans. Egypt. J. Food Sci., 24 (2) 105-118.
23. Steel R. G. D., and Torrie J. H. (1982) Principals and Procedures of Statistics A Biometrical Approach. McGraw Hill Book Company, New York. USA.
24. Siqueira B. S., Bassinello P. Z., Malgaresi G., Pereira W. J., and Fernandes K. F. (2016) Analyses of technological and biochemical parameters related to the HTC phenomenon in carioca bean genotypes by the use of PCA. LWT - Food Sci. Technol., 65 939-945.
25. Sandhu K. S., You F. M., Conner R. L., Balasubramanian P. M., and Hou A. (2018) Genetic analysis and QTL mapping of the seed hardness trait in a black common bean (Phaseolus vulgaris) recombinant inbred line (RIL) population. Mol. Breed., 38 (3) 1-13.
26. Wafula E. N., Wainaina I. N., Buvé C., Kinyanjui P. K., Saeys W., Sila D. N., and Hendrickx M. E. (2021) Prediction of cooking times of freshly harvested common beans and their susceptibility to develop the hard-to-cook defect using near infrared spectroscopy. J. Food Eng., 298 110495.
27. Paesani C., Degano A. L., Zalosnik M. I., Fabi J. P., and Pérez G. T. (2021) Enzymatic modification of arabinoxylans from soft and hard Argentinian wheat inhibits the viability of HCT-116 cells. Food Res. Int., 147 110466.
28. Parmar N., Singh N., Kaur A., and Thakur S. (2017) Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J. Food Sci. Technol., 54 (4) 1023-1034.
29. Crépon K., Marget P., Peyronnet C., Carrouée B., Arese P., and Duc G. (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res., 115 (3) 329-339.
30. Tigist M., WorknehT. S., and Woldetsadik K. (2013) Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol., 50 (3) 477-486.
31. Garrity D. P., Watts D. G., Sullivan C. Y., and Gilley J. R. (1982) Moisture Deficits and Grain Sorghum Performance: Evapotranspiration‐Yield Relationships 1. Agron. J., 74 (5) 815-820.
32. Hasstedt S. J., Leppert M., Filloux F., van de Wetering B. J., and McMahon W. M. (1995) Intermediate inheritance of Tourette syndrome, assuming assortative mating. Am. J. Hum. Genet., 57 (3) 682.
33. Peters W. S., and Bernstein N. (1997) The determination of relative elemental growth rate profiles from segmental growth rates (a methodological evaluation). Plant Physiol., 113 (4) 1395-1404.
34. Lieberman L. (2001) How “Caucasoids” got such big crania and why they shrank: from Morton to Rushton. Curr. Anthropol., 42 (1) 69-95.
35. Abd-Ella A. A., Metwally S. A., Abdul-Malik M. A., El-Ossaily Y. A., Abd Elrazek F. M., Aref S. A., Naffea Y. A., and Abdel-Raheem Sh. A. A. (2022) A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives. Curr. Chem. Lett., 11 (2) 157-172.
36. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Zaki R. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur. Chem. Bull., 10 (4) 225-229.
37. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2019) Design, Synthesis, Characterization, and Insecticidal Bioefficacy Screening of Some New Pyridine Derivatives. ACS Omega, 4 (5) 8406-8412.
38. Tolba M. S., Sayed M., Kamal El-Dean A. M., Hassanien R., Abdel-Raheem Sh. A. A., and Ahmed M. (2021) Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 14 (4) 334-345.
39. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
40. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Hassanien R., El-Sayed M. E. A., Abd-Ella A. A., Zawam S. A., and Tolba M. S. (2022) Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Curr. Chem. Lett., 11 (1) 23-28.
41. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2017) Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholiniumcyanopyridinethiolates and their Insecticidal Activity. J. Saud. Chem. Soc., 21 (1) 95–104.
42. Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 (2019) 100-104.
43. Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., 10 (4) 393-412.
44. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
45. Tolba M. S., Sayed M., Abdel-Raheem Sh. A. A., Gaber T. A., Kamal El-Dean A. M., and Ahmed M. (2021) Synthesis and spectral characterization of some new thiazolopyrimidine derivatives. Curr. Chem. Lett., 10 (4) 471-478.
46. Al-Taifi E. A., Abdel-Raheem Sh. A. A., and Bakhite E. A. (2016) Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines. Assiut University Journal of Chemistry (AUJC), 45 (1) 24-32.
47. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and spectral characterization of selective pyridine compounds as bioactive agents. Curr. Chem. Lett., 10 (3) 255-260.
48. Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abdul-Malik M. A., Abd-Ella A. A., Al-Taifi E. A., Hassanien R., El-Sayed M. E. A., Mohamed S. K., Zawam S. A., and Bakhite E. A. (2021) A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10 (4) 337-362.
49. Tolba M. S., Kamal El-Dean A. M., Ahmed M., Hassanien R., Sayed M., Zaki R. M., Mohamed S. K., Zawam S. A., and Abdel-Raheem Sh. A. A. (2022) Synthesis, reactions, and applications of pyrimidine derivatives. Curr. Chem. Lett., 11 (1) 121-138.
50. Abdelhafeez I. A., El-Tohamy S. A., Abdul-Malik M. A., Abdel-Raheem Sh. A. A., and El-Dars F. M. S. (2022) A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil. Curr. Chem. Lett., 11 (1) 43-62.
51. Tolba M. S., Abdul-Malik M. A., Kamal El-Dean A. M., Geies A. A., Radwan Sh. M., Zaki R. M., Sayed M., Mohamed S. K., and Abdel-Raheem Sh. A. A. (2022) An overview on synthesis and reactions of coumarin based compounds. Curr. Chem. Lett., 11 (1) 29-42.
52. Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2014) Pyridine derivatives as insecticides. Part 1: Synthesis and toxicity of some pyridine derivatives against Cowpea Aphid, Aphis craccivora Koch (Homoptera: Aphididae). J. Agric. Food Chem., 62 (41) 9982–9986.
53. Abdelhamid A. A., Elsaghier A. M. M., Aref S. A., Gad M. A., Ahmed N. A., and Abdel-Raheem Sh. A. A. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
54. Elhady O. M., Mansour E. S., Elwassimy M. M., Zawam S. A., Drar A. M., and Abdel-Raheem Sh. A. A. (2022) Selective synthesis, characterization, and toxicological activity screening of some furan compounds as pesticidal agents. Curr. Chem. Lett., 11 (3) 285-290.
55. Kaid M., Ali A. E., Shamsan A. Q. S., Salem W. M., Younes S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Efficiency of maturation oxidation ponds as a post-treatment technique of wastewater. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2022.4.005).
56. Mohamed S. K., Mague J. T., Akkurt M., Alfayomy A. M., Abou Seri S. M., Abdel-Raheem Sh. A. A., and Abdul-Malik M. A. (2022) Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-chlorophenyl)-3-{[(4-chlorophenyl)formamido]imino}-7-methyl-2H,3H,5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate. Acta Cryst., Accepted Manuscript (DOI: 10.1107/S205698902200603X).
57. Ahmed A. A., and El-Mahdy A. A. (2022) Improving seed germination and seedling growth of maize (Zea mays, L.) seed by soaking in water and moringa oleifera leaf extract. Curr. Chem. Lett., 11 (2) 147-156.
58. Ahmed A. A., Attya A., Harb A. H., and Mostafa S. (2021) Genetic variation of barley enotypes using morphological, yield components and molecular markers. Journal of Global Agriculture and Ecology, 12 (2) 29-39.
59. Abo-Hegazy S. R. E., Ashrei A. A. M., and Ahmed A. A. (2020) Evaluation of Some Lupin Genotypes Using Different Agro-morphological, Statistical and Chemical Methods. Asian J. Crop Sci., 12 72-83.
60. Ashrei A. A. M., Ahmed A. A., Behairy R. T., and Abdel-Wahab E. I. (2018) Identification of some lupine genotypes using morphological, chemical methods and yield components. Egypt. J. Plant Breed., 22 (3) 579– 595.
61. Ahmed A. A., Aboel-Komsan S. M., and Mostafa S. (2018) Morphological and biochemical identification of some flax genotypes. Egypt. J. Plant Breed., 22 (3) 597– 612.
62. Ahmed A. A., Reiad M. S., and Ibrahim H. S. (2014) Characterization of some faba bean genotypes using morphological and chemical methods. Egypt. J. Plant Breed., 17 (2) 161-179.
63. Yassin O., Ismail S., Gameh M., Khalil F., and Ahmed E. (2022) Evaluation of chemical composition of roots of three sugar beets varieties growing under different water deficit and harvesting dates in Upper Egypt. Curr. Chem. Lett., 11 (1) 1-10.
64. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize. Curr. Chem. Lett., 11 (2) 219-226.
65. Yassin O. M., Ismail S., Ali M., Khalil F., and Ahmed E. (2021) Optimizing Roots and Sugar Yields and Water Use Efficiency of Different Sugar Beet Varieties Grown Under Upper Egypt Conditions Using Deficit Irrigation and Harvesting Dates. Egypt. J. Soil Sci., 61 (3) 367-372.
66. Abdelgali A., Mustafa A. A., Ali S. A. M., Yassin O. M. (2018) Irrigation intervals as a guide to surface irrigation scheduling of maize in Upper Egypt. J. Biol. Chem. Environ. Sci., 13 (2) 121-133.
67. Abdelgalil A., Mustafa A. A., Ali S. A. M., and Yassin O. M. (2022) Effect of different water deficit and foliar spray of zinc and silicon treatments of chemical composition of maize. Curr. Chem. Lett., 11 (2) 191-198.