How to cite this paper
Beheshti, A., Payab, M., Seyyed-Ali-Karbasi, V & Siadati, S. (2022). An unexpected aerobic oxidation of α-amino boronic acid part of Borteomib, leading to (thermal) decomposition of this very expensive anti-cancer API.Current Chemistry Letters, 11(2), 227-236.
Refrences
1 Zhang S., Kulkarni A. A., Xu B., Chu H., Kourelis T., Go R. S., Wang Y. (2020) Bortezomib-based consolidation or maintenance therapy for multiple myeloma: a meta-analysis, Blood cancer J., 10 1-9.
2 Yates S., Matevosyan K., Rutherford C., Shen Y. M., Sarode R. (2014) Bortezomib for chronic relapsing thrombotic thrombocytopenic purpura: a case report, Transfusion 54 2064-2067.
3 Houssein E. H., Hosney M. E., Elhoseny M., Oliva D., Mohamed W. M., Hassaballah M. (2020) Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics, Sci. Rep. 10 1-22.
4 Panda P., Chakroborty S. (2020) Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents, Chem. Select 5 10187-10199.
5 a) Bakherad M., Keivanloo A., Samangooei S., Omidian M. (2013) A phenyldithiocarbazate-functionalized polyvinyl chloride resin-supported Pd (II) complex as an effective catalyst for solvent-and copper-free Sonogashira reactions under aerobic conditions, J. Organomet. Chem. 740 78-82; b) Bakherad M., Keivanloo A., Siavashi M., Omidian M. (2014) Three-component synthesis of imidazo [1, 2-c] pyrimidines using silica sulfuric acid (SSA). Chinese Chem. Lett. 25 149-151.
6 a) Rostami-Charati F., Hossaini Z., Sheikholeslami-Farahani F., Azizi S., Siadati S. A. (2015) Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. chem. high throughput screen. 18 872-880; b) Hossaini Z., Rostami-Charati F., Ghambarian M., Siadati S. A. (2015) Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkylphosphites or triarylphosphites in water. Phosphorus Sulfur Silicon Relat. Elem. 190 1177-1182; c) Dadras A., Rezvanfar M. A., Beheshti A., Naeimi S. S., Siadati S. A. (2021) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19, Comb. Chem. High Throughput Screen. 24. Accepted manuscript, DOI: 10.2174/1386207324666210203175631.
7 Sydow D., Morger A., Driller M., Volkamer A. (2019) TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data. J. cheminformatics 11 1-7.
8 a) Grzelak P., Utecht G., Jasiński M., Mlostoń G. (2017) First (3+ 2)-cycloadditions of thiochalcones as C= S dipolarophiles: efficient synthesis of 1, 3, 4-thiadiazoles via reactions with fluorinated nitrile imines. Synthesis 49 2129-2137; b) Bakherad M., Keivanloo A., Omidian M., Samangooei S. (2014) Synthesis of pyrrolo [2, 3-b] pyrazines through Sonogashira coupling reaction of 5, 6-dichloropyrazine-2, 3-dicarbonitrile with hydrazine, phenylacetylene and various aldehydes. J. Chem. Res. 38 762-764.
9 Jasiński R., Żmigrodzka M., Dresler E., Kula K. (2017) A Full Regioselective and Stereoselective Synthesis of 4‐Nitroisoxazolidines via Stepwise [3+ 2] Cycloaddition Reactions between (Z)‐C‐(9‐Anthryl)‐N‐arylnitrones and (E)‐3, 3, 3‐Trichloro‐1‐nitroprop‐1‐ene: Comprehensive Experimental and Theoretical Study. J. Hetero. Chem. 54 3314-3320.
10 Sova M., Frlan R., Gobec S., Časar Z. (2020) Efficient and Straightforward Syntheses of Two United States Pharmacopeia Sitagliptin Impurities: 3-Desamino-2, 3-dehydrositagliptin and 3-Desamino-3, 4-dehydrositagliptin. ACS omega 5 5356-5364.
11 Guo K., Zhang T., Wang Y., Jin B., Ma C. (2019) Characterization of degradation products and process-related impurity of sutezolid by liquid chromatography/electrospray ionization tandem mass spectrometry. J. pharma. Biomed. Anal. 169 196-207..
12 a) Jasiński R., Dresler E. (2020) On the question of zwitterionic intermediates in the [3+ 2] cycloaddition reactions: A critical review. Organics, 1 49-69; b) Jasiński R., Mikulska M., Barański A. (2013) An experimental and theoretical study of the polar [2+ 3] cycloaddition reactions between 1-chloro-1-nitroethene and (Z)-C-aryl-N-phenylnitrones. Cent. Europ. J. Chem. 11 1471-1480; c) Siadati S. A. (2015) An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron let. 56 4857-4863; d) Siadati S. A. (2016) Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. Reac. Kinet. Mech. 41 331-344.
13 a) Chen M., He C. Q., Houk K. N. (2019) Mechanism and Regioselectivity of an Unsymmetrical Hexadehydro-Diels–Alder (HDDA) Reaction. J. Org. Chem. 84 1959-1963; b) Siadati S. A. (2016) The Effect of Position Replacement of Functional Groups on the Stepwise character of 1, 3‐Dipolar Reaction of a Nitrile Oxide and an Alkene. Helve. Chim. Acta 99 273-280; c) Siadati S. A. (2016) A Theoretical Study on Stepwise-and Concertedness of the Mechanism of 1, 3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide. Comb. Chem. high throughput screen. 19 170-175.
14 a) Firestone R. A. (2013) The Low Energy of Concert in Many Symmetry‐Allowed Cycloadditions Supports a Stepwise‐Diradical Mechanism. Intern. J. Chem. Kinet. 45 415-428; b) Mohtat B., Siadati S. A., Khalilzadeh M. A., Zareyee D. (2017) The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1, 3-dipolar cycloadditions of azides and alkynes. J. Mol. Struct. 1155, 58-64.
15 Kasabe A., Yadav A., Veer V. (2020) Consideration of stability study in pharmaceutical product: A Review. J. Current Pharma Res. 10 3832-3847.
16 Naz A., Sher N., Siddiqui F. A., Kashif M., Ansari A. (2019) Simultaneous analysis of daclatasvir with its three organic impurities: Application in stability studies, pharmaceuticals and serum samples. Microchem. J. 147 797-805.
17 Cox P.A., Reid M., Leach A. G., Campbell A. D., King E. J., Lloyd-Jones G. C. (2017) Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion, J. Am. Chem. Soc. 139 13156-13165.
18 Grayson J. D., Partridge B. M. (2019) Mild cu-catalyzed oxidation of Benzylic Boronic esters to ketones, ACS Catal. 9 4296-4301.
19 USP, Crospovidone (2016) "USP 39-NF 34." Rockville, MD, USA, 838.
20 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria, G. E. et al. (2003) GAUSSIAN 03, Gaussian Inc. Pittsburgh, PA.
21 Becke A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 3098-3100.
22 a) Delchev V., Nenkova M. V. (2008) Theoretical Modeling of the Ground State Intermolecular Proton Transfer in Cytosine: DFT Level Study, Acta. Chim. Slov. 55 132-137; b) Kącka-Zych A., Radomir J. (2020) Molecular mechanism of Hetero Diels-Alder reactions between (E)-1, 1, 1-trifluoro-3-nitrobut-2-enes and enamine systems in the light of Molecular Electron Density Theory, J Mol. Graph. Model. 101 107714; c) Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., Jasiński R. (2021) Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3, 3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules 26 1364; d) Jasiński R., Agnieszka Kącka A. (2015) A polar nature of benzoic acids extrusion from nitroalkyl benzoates: DFT mechanistic study, J. Mol. Model. 21 1-7.
23 Peng C., Ayala P. Y., Schlegel H. B., Frisch M. J. (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states, J. Comput. Chem. 17 49-56.
24 Peng C., Schlegel H. B. (1993) Combining synchronous transit and quasi‐newton methods to find transition states, Isr. J. Chem. 33 449-454.
25 Pu M., Privalov T. (2015) Ab initio molecular dynamics with explicit solvent reveals a two‐step pathway in the frustrated Lewis pair reaction, Chem.–A Europ. J. 21 17708-17720.
2 Yates S., Matevosyan K., Rutherford C., Shen Y. M., Sarode R. (2014) Bortezomib for chronic relapsing thrombotic thrombocytopenic purpura: a case report, Transfusion 54 2064-2067.
3 Houssein E. H., Hosney M. E., Elhoseny M., Oliva D., Mohamed W. M., Hassaballah M. (2020) Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics, Sci. Rep. 10 1-22.
4 Panda P., Chakroborty S. (2020) Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents, Chem. Select 5 10187-10199.
5 a) Bakherad M., Keivanloo A., Samangooei S., Omidian M. (2013) A phenyldithiocarbazate-functionalized polyvinyl chloride resin-supported Pd (II) complex as an effective catalyst for solvent-and copper-free Sonogashira reactions under aerobic conditions, J. Organomet. Chem. 740 78-82; b) Bakherad M., Keivanloo A., Siavashi M., Omidian M. (2014) Three-component synthesis of imidazo [1, 2-c] pyrimidines using silica sulfuric acid (SSA). Chinese Chem. Lett. 25 149-151.
6 a) Rostami-Charati F., Hossaini Z., Sheikholeslami-Farahani F., Azizi S., Siadati S. A. (2015) Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. chem. high throughput screen. 18 872-880; b) Hossaini Z., Rostami-Charati F., Ghambarian M., Siadati S. A. (2015) Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkylphosphites or triarylphosphites in water. Phosphorus Sulfur Silicon Relat. Elem. 190 1177-1182; c) Dadras A., Rezvanfar M. A., Beheshti A., Naeimi S. S., Siadati S. A. (2021) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19, Comb. Chem. High Throughput Screen. 24. Accepted manuscript, DOI: 10.2174/1386207324666210203175631.
7 Sydow D., Morger A., Driller M., Volkamer A. (2019) TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data. J. cheminformatics 11 1-7.
8 a) Grzelak P., Utecht G., Jasiński M., Mlostoń G. (2017) First (3+ 2)-cycloadditions of thiochalcones as C= S dipolarophiles: efficient synthesis of 1, 3, 4-thiadiazoles via reactions with fluorinated nitrile imines. Synthesis 49 2129-2137; b) Bakherad M., Keivanloo A., Omidian M., Samangooei S. (2014) Synthesis of pyrrolo [2, 3-b] pyrazines through Sonogashira coupling reaction of 5, 6-dichloropyrazine-2, 3-dicarbonitrile with hydrazine, phenylacetylene and various aldehydes. J. Chem. Res. 38 762-764.
9 Jasiński R., Żmigrodzka M., Dresler E., Kula K. (2017) A Full Regioselective and Stereoselective Synthesis of 4‐Nitroisoxazolidines via Stepwise [3+ 2] Cycloaddition Reactions between (Z)‐C‐(9‐Anthryl)‐N‐arylnitrones and (E)‐3, 3, 3‐Trichloro‐1‐nitroprop‐1‐ene: Comprehensive Experimental and Theoretical Study. J. Hetero. Chem. 54 3314-3320.
10 Sova M., Frlan R., Gobec S., Časar Z. (2020) Efficient and Straightforward Syntheses of Two United States Pharmacopeia Sitagliptin Impurities: 3-Desamino-2, 3-dehydrositagliptin and 3-Desamino-3, 4-dehydrositagliptin. ACS omega 5 5356-5364.
11 Guo K., Zhang T., Wang Y., Jin B., Ma C. (2019) Characterization of degradation products and process-related impurity of sutezolid by liquid chromatography/electrospray ionization tandem mass spectrometry. J. pharma. Biomed. Anal. 169 196-207..
12 a) Jasiński R., Dresler E. (2020) On the question of zwitterionic intermediates in the [3+ 2] cycloaddition reactions: A critical review. Organics, 1 49-69; b) Jasiński R., Mikulska M., Barański A. (2013) An experimental and theoretical study of the polar [2+ 3] cycloaddition reactions between 1-chloro-1-nitroethene and (Z)-C-aryl-N-phenylnitrones. Cent. Europ. J. Chem. 11 1471-1480; c) Siadati S. A. (2015) An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron let. 56 4857-4863; d) Siadati S. A. (2016) Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. Reac. Kinet. Mech. 41 331-344.
13 a) Chen M., He C. Q., Houk K. N. (2019) Mechanism and Regioselectivity of an Unsymmetrical Hexadehydro-Diels–Alder (HDDA) Reaction. J. Org. Chem. 84 1959-1963; b) Siadati S. A. (2016) The Effect of Position Replacement of Functional Groups on the Stepwise character of 1, 3‐Dipolar Reaction of a Nitrile Oxide and an Alkene. Helve. Chim. Acta 99 273-280; c) Siadati S. A. (2016) A Theoretical Study on Stepwise-and Concertedness of the Mechanism of 1, 3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide. Comb. Chem. high throughput screen. 19 170-175.
14 a) Firestone R. A. (2013) The Low Energy of Concert in Many Symmetry‐Allowed Cycloadditions Supports a Stepwise‐Diradical Mechanism. Intern. J. Chem. Kinet. 45 415-428; b) Mohtat B., Siadati S. A., Khalilzadeh M. A., Zareyee D. (2017) The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1, 3-dipolar cycloadditions of azides and alkynes. J. Mol. Struct. 1155, 58-64.
15 Kasabe A., Yadav A., Veer V. (2020) Consideration of stability study in pharmaceutical product: A Review. J. Current Pharma Res. 10 3832-3847.
16 Naz A., Sher N., Siddiqui F. A., Kashif M., Ansari A. (2019) Simultaneous analysis of daclatasvir with its three organic impurities: Application in stability studies, pharmaceuticals and serum samples. Microchem. J. 147 797-805.
17 Cox P.A., Reid M., Leach A. G., Campbell A. D., King E. J., Lloyd-Jones G. C. (2017) Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion, J. Am. Chem. Soc. 139 13156-13165.
18 Grayson J. D., Partridge B. M. (2019) Mild cu-catalyzed oxidation of Benzylic Boronic esters to ketones, ACS Catal. 9 4296-4301.
19 USP, Crospovidone (2016) "USP 39-NF 34." Rockville, MD, USA, 838.
20 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria, G. E. et al. (2003) GAUSSIAN 03, Gaussian Inc. Pittsburgh, PA.
21 Becke A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 3098-3100.
22 a) Delchev V., Nenkova M. V. (2008) Theoretical Modeling of the Ground State Intermolecular Proton Transfer in Cytosine: DFT Level Study, Acta. Chim. Slov. 55 132-137; b) Kącka-Zych A., Radomir J. (2020) Molecular mechanism of Hetero Diels-Alder reactions between (E)-1, 1, 1-trifluoro-3-nitrobut-2-enes and enamine systems in the light of Molecular Electron Density Theory, J Mol. Graph. Model. 101 107714; c) Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., Jasiński R. (2021) Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3, 3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules 26 1364; d) Jasiński R., Agnieszka Kącka A. (2015) A polar nature of benzoic acids extrusion from nitroalkyl benzoates: DFT mechanistic study, J. Mol. Model. 21 1-7.
23 Peng C., Ayala P. Y., Schlegel H. B., Frisch M. J. (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states, J. Comput. Chem. 17 49-56.
24 Peng C., Schlegel H. B. (1993) Combining synchronous transit and quasi‐newton methods to find transition states, Isr. J. Chem. 33 449-454.
25 Pu M., Privalov T. (2015) Ab initio molecular dynamics with explicit solvent reveals a two‐step pathway in the frustrated Lewis pair reaction, Chem.–A Europ. J. 21 17708-17720.