How to cite this paper
Beheshti, A., Kamalzadeha, Z., Haj-Maleka, M., Payaba, M., Rezvanfar, M & Siadati, S. (2021). Development and validation of a reversed-phase HPLC method for determination of assay content of Teriflunomide by the aid of BOMD simulations.Current Chemistry Letters, 10(3), 281-294.
Refrences
1 Patejdl R., Penner I. K., Noack T. K., Zettl U. K. (2016) Multiple sclerosis and fatigue: a review on the contribution of inflammation and immune-mediated neurodegeneration, Autoimmunity rev., 15(3) 210-220.
2 Yong V. W. (2002) Differential mechanisms of action of interferon-β and glatiramer acetate in MS. Neurology, 59 (6) 802-808.
3 Kowarik M. C., Pellkofer H. L., Cepok S., Korn T., Kümpfel T., Buck D., Hemmer B. (2011) Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology, 76 (14) 1214-1221.
4 Mohajeri M., Sadeghizadeh M., Najafi F., Javan M. (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology, 99 156-167.
5 Kalincik T., Havrdova E. K., Horakova D., Izquierdo G., Prat A., Girard M., Ozakbas S. (2019) Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J Neurol Neurosurg Psychiatry, 90 (4) 458-468.
6 Gever J (June 4, 2012). Teriflunomide Modest Help but Safe for MS. medpage. Joint meeting of the Consortium of Multiple Sclerosis Centers and the Americas Committee for Treatment and Research in Multiple Sclerosis. Retrieved June 4, 2012
7 Drug Approval Package: Aubagio (teriflunomide) Tablets NDA #202992". U.S. Food and Drug Administration (FDA). 5 November 2012.
8 Sobhani K., Garrett D. A., Liu D. P., Rainey P. M. (2010) A rapid and simple high-performance liquid chromatography assay for the leflunomide metabolite, teriflunomide (A77 1726), in renal transplant recipients. Am. J clinical pathology, 133 (3) 454-457.
9 Bhavya M., Prajapat P., Gohil Y. (2017) Development and validation of stability indicating RP-HPLC method for estimation of teriflunomide in active pharmaceutical ingredient, Pharma. Innov., 6 (9) 440-449.
10 Halima R., Rozek T., Hopkins A., Proudman S., Cleland L., James M., Wiese M. (2011) Quantitation of total and free teriflunomide (A77 1726) in human plasma by LC–MS/MS. J. pharma. Biomed. Anal., 55 (2) 325-331.
11 Gao S., Duan M., Houk K. N., Chen M. (2020) Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angewandte Chem. Int. Ed., 59 (26) 10540-10548.
12 a) Athavale S. V., Simon A., Houk K. N., Denmark S. E. (2020) Demystifying the asymmetry-amplifying, autocatalytic behaviour of the Soai reaction through structural, mechanistic and computational studies, Nature chem., 12 (4) 412-423.; b) Woliński P., Kącka-Zych A., Demchuk O. M., Łapczuk-Krygier A., Mirosław B., Jasiński R. (2020) Clean and molecularly programmable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings, J. Clean. Product., 275 122086.
13 a) Bakherad M., Keivanloo A., Samangooei S., Omidian M. (2013) A phenyldithio carbazate-functionalized polyvinyl chloride resin-supported Pd (II) complex as an effective catalyst for solvent-and copper-free Sonogashira reactions under aerobic conditions, J. Organomet. Chem., 740 78-82; b) Bakherad M., Keivanloo A., Omidian M., Samangooei S. (2014) Synthesis of pyrrolo [2, 3-b] pyrazines through Sonogashira coupling reaction of 5, 6-dichloropyrazine-2, 3-dicarbonitrile with hydrazine, phenylacetylene and various aldehydes, J. Chem. Res., 38 (12) 762-764.
14 Hecht K., Meyer H. P., Wohlgemuth R., Buller R. (2020) Biocatalysis in the Swiss manufacturing environment. Catalysts, 10 (12) 1420.
15 a) Rostami-Charati F., Hossaini Z., Sheikholeslami-Farahani F., Azizi Z., Siadati S. A. (2015) Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. high throughput screen., 18 (9) 872-880; b) Hossaini Z., Rostami-Charati F., Ghambarian, M., Siadati, S. A. (2015) Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkyl phosphites or triaryl phosphites in water, Phosphorus Sulfur Silicon Relat. Elem., 190 (7) 1177-1182.
16 a) Siadati S. A. (2016) Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. React. Kinet. Mech., 41 (4) 331-344; b) Siadati S. A. (2016) A Theoretical Study on Stepwise-and Concertedness of the Mechanism of 1, 3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide. Comb. Chem. high throughput screen., 19 (2) 170-175; c) Siadati S. A., Nami N., Zardoost M. R. (2011) A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3, 4–Dihydroisoquinoline-N-Oxide. Prog. React. Kinet. Mech., 36 (3) 252-258;
17 a) Siadati S. A., Amini-Fazl M. S., Babanezhad E. (2016) The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their [2+ 3] cycloaddition reactions with C20 fullerene, Sens. Actuator B Chem., 237 591-596; b) Siadati S. A., Nami N. (2016) Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels–Alder reaction. Physica E: Low-dimens. Sys. Nanostruct., 84 55-59.
18 a) Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., Demchuk O. M. (2020) [3+ 2] Cycloaddition of diaryldiazomethanes with (E)-3, 3, 3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473; b) Siadati S. A., Mirabi A. (2015) Diels-Alder versus 1, 3-dipolar cycloaddition pathways in the reaction of C20 fullerene and 2-furan nitrile oxide, Prog. React. Kinet. Mech., 40 (4) 383-390; c) Jasiński R., Dresler E. (2020) On the Question of Zwitterionic Intermediates in the [3+ 2] Cycloaddition Reactions: A Critical Review, Organics, 1 (1) 49-69.
19 a) Katakam L. N. R., Dongala, T. (2020) A novel RP‐HPLC refractive index detector method development and validation for determination of trace‐level alcohols (un‐sulfated) in sodium lauryl sulfate raw material, Biomed. Chromato., 34 (7) 4827; b) Siadati S. A., Rezvanfar M. A., Payab M., Beheshti, A. (2021) Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system, Curr. Chem. Lett., doi: 10.5267/j.ccl.2020.12.002; c) Dadras, A., Rezvanfar, M. A., Beheshti, A., Naeimi, S. S., Siadati, S. A. (2021) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Comb. Chem. High Throughput Screen., DOI:10.2174/1386207324666210203175631.
20 ICH Harmonized Tripartite Guideline, Impurities in new drug substances, Q3A(R2), Current Step 4 version, dated 25 October 2006. http://www.ich.org/fileadmin /Public_Web _Site /ICH_ Products/Guidelines/Quality/Q3A_R2/ Step4/Q3A_R2__Guideline.pdf (accessed December, 2016).
21 Armbruster D. A., Tillman M. D., Hubbs L. M. (1994) Limit of detection (LQD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clinical chem., 40 (7) 1233-1238.
22 Ermer J., Arth C., De Raeve P., Dill D., Friedel H. D., Höwer-Fritzen H., Maegerlein M. (2005) Precision from drug stability studies: Investigation of reliable repeatability and intermediate precision of HPLC assay procedures. J pharma. Biomed. Anal., 38 (4) 653-663.
23 Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., et al. GAUSSIAN 03, Gaussian Inc. Pittsburgh, PA, 2003.
24 Pu, M., Privalov, T. (2015) Ab initio molecular dynamics with explicit solvent reveals a two‐step pathway in the frustrated Lewis pair reaction, Chem.–A Europ. J., 21 17708-17720.
25 Li C., Requist R., Gross E. K. U. (2018) Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF. J. chem. phys., 148 (8) 084110.
26 Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 3098-3100.
27 Delchev V., Nenkova, M. V. (2008) Theoretical Modeling of the Ground State Intermolecular Proton Transfer in Cytosine: DFT Level Study, Acta. Chim. Slov., 55 132-137.
28 Blase X., Duchemin I., Jacquemin D. (2018) The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges, Chem. Soc. Rev., 47 (3) 1022-1043.
29 Khan I. M., Alam K., Alam M. J. (2020) Exploring charge transfer dynamics and photocatalytic behavior of designed donor-acceptor complex: characterization, spectrophotometric and theoretical studies (DFT/TD-DFT), J. Mol. Liquid, 310 113213.
2 Yong V. W. (2002) Differential mechanisms of action of interferon-β and glatiramer acetate in MS. Neurology, 59 (6) 802-808.
3 Kowarik M. C., Pellkofer H. L., Cepok S., Korn T., Kümpfel T., Buck D., Hemmer B. (2011) Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology, 76 (14) 1214-1221.
4 Mohajeri M., Sadeghizadeh M., Najafi F., Javan M. (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology, 99 156-167.
5 Kalincik T., Havrdova E. K., Horakova D., Izquierdo G., Prat A., Girard M., Ozakbas S. (2019) Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J Neurol Neurosurg Psychiatry, 90 (4) 458-468.
6 Gever J (June 4, 2012). Teriflunomide Modest Help but Safe for MS. medpage. Joint meeting of the Consortium of Multiple Sclerosis Centers and the Americas Committee for Treatment and Research in Multiple Sclerosis. Retrieved June 4, 2012
7 Drug Approval Package: Aubagio (teriflunomide) Tablets NDA #202992". U.S. Food and Drug Administration (FDA). 5 November 2012.
8 Sobhani K., Garrett D. A., Liu D. P., Rainey P. M. (2010) A rapid and simple high-performance liquid chromatography assay for the leflunomide metabolite, teriflunomide (A77 1726), in renal transplant recipients. Am. J clinical pathology, 133 (3) 454-457.
9 Bhavya M., Prajapat P., Gohil Y. (2017) Development and validation of stability indicating RP-HPLC method for estimation of teriflunomide in active pharmaceutical ingredient, Pharma. Innov., 6 (9) 440-449.
10 Halima R., Rozek T., Hopkins A., Proudman S., Cleland L., James M., Wiese M. (2011) Quantitation of total and free teriflunomide (A77 1726) in human plasma by LC–MS/MS. J. pharma. Biomed. Anal., 55 (2) 325-331.
11 Gao S., Duan M., Houk K. N., Chen M. (2020) Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angewandte Chem. Int. Ed., 59 (26) 10540-10548.
12 a) Athavale S. V., Simon A., Houk K. N., Denmark S. E. (2020) Demystifying the asymmetry-amplifying, autocatalytic behaviour of the Soai reaction through structural, mechanistic and computational studies, Nature chem., 12 (4) 412-423.; b) Woliński P., Kącka-Zych A., Demchuk O. M., Łapczuk-Krygier A., Mirosław B., Jasiński R. (2020) Clean and molecularly programmable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings, J. Clean. Product., 275 122086.
13 a) Bakherad M., Keivanloo A., Samangooei S., Omidian M. (2013) A phenyldithio carbazate-functionalized polyvinyl chloride resin-supported Pd (II) complex as an effective catalyst for solvent-and copper-free Sonogashira reactions under aerobic conditions, J. Organomet. Chem., 740 78-82; b) Bakherad M., Keivanloo A., Omidian M., Samangooei S. (2014) Synthesis of pyrrolo [2, 3-b] pyrazines through Sonogashira coupling reaction of 5, 6-dichloropyrazine-2, 3-dicarbonitrile with hydrazine, phenylacetylene and various aldehydes, J. Chem. Res., 38 (12) 762-764.
14 Hecht K., Meyer H. P., Wohlgemuth R., Buller R. (2020) Biocatalysis in the Swiss manufacturing environment. Catalysts, 10 (12) 1420.
15 a) Rostami-Charati F., Hossaini Z., Sheikholeslami-Farahani F., Azizi Z., Siadati S. A. (2015) Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. high throughput screen., 18 (9) 872-880; b) Hossaini Z., Rostami-Charati F., Ghambarian, M., Siadati, S. A. (2015) Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkyl phosphites or triaryl phosphites in water, Phosphorus Sulfur Silicon Relat. Elem., 190 (7) 1177-1182.
16 a) Siadati S. A. (2016) Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. React. Kinet. Mech., 41 (4) 331-344; b) Siadati S. A. (2016) A Theoretical Study on Stepwise-and Concertedness of the Mechanism of 1, 3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide. Comb. Chem. high throughput screen., 19 (2) 170-175; c) Siadati S. A., Nami N., Zardoost M. R. (2011) A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3, 4–Dihydroisoquinoline-N-Oxide. Prog. React. Kinet. Mech., 36 (3) 252-258;
17 a) Siadati S. A., Amini-Fazl M. S., Babanezhad E. (2016) The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their [2+ 3] cycloaddition reactions with C20 fullerene, Sens. Actuator B Chem., 237 591-596; b) Siadati S. A., Nami N. (2016) Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels–Alder reaction. Physica E: Low-dimens. Sys. Nanostruct., 84 55-59.
18 a) Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., Demchuk O. M. (2020) [3+ 2] Cycloaddition of diaryldiazomethanes with (E)-3, 3, 3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203 127473; b) Siadati S. A., Mirabi A. (2015) Diels-Alder versus 1, 3-dipolar cycloaddition pathways in the reaction of C20 fullerene and 2-furan nitrile oxide, Prog. React. Kinet. Mech., 40 (4) 383-390; c) Jasiński R., Dresler E. (2020) On the Question of Zwitterionic Intermediates in the [3+ 2] Cycloaddition Reactions: A Critical Review, Organics, 1 (1) 49-69.
19 a) Katakam L. N. R., Dongala, T. (2020) A novel RP‐HPLC refractive index detector method development and validation for determination of trace‐level alcohols (un‐sulfated) in sodium lauryl sulfate raw material, Biomed. Chromato., 34 (7) 4827; b) Siadati S. A., Rezvanfar M. A., Payab M., Beheshti, A. (2021) Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system, Curr. Chem. Lett., doi: 10.5267/j.ccl.2020.12.002; c) Dadras, A., Rezvanfar, M. A., Beheshti, A., Naeimi, S. S., Siadati, S. A. (2021) An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Comb. Chem. High Throughput Screen., DOI:10.2174/1386207324666210203175631.
20 ICH Harmonized Tripartite Guideline, Impurities in new drug substances, Q3A(R2), Current Step 4 version, dated 25 October 2006. http://www.ich.org/fileadmin /Public_Web _Site /ICH_ Products/Guidelines/Quality/Q3A_R2/ Step4/Q3A_R2__Guideline.pdf (accessed December, 2016).
21 Armbruster D. A., Tillman M. D., Hubbs L. M. (1994) Limit of detection (LQD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clinical chem., 40 (7) 1233-1238.
22 Ermer J., Arth C., De Raeve P., Dill D., Friedel H. D., Höwer-Fritzen H., Maegerlein M. (2005) Precision from drug stability studies: Investigation of reliable repeatability and intermediate precision of HPLC assay procedures. J pharma. Biomed. Anal., 38 (4) 653-663.
23 Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., et al. GAUSSIAN 03, Gaussian Inc. Pittsburgh, PA, 2003.
24 Pu, M., Privalov, T. (2015) Ab initio molecular dynamics with explicit solvent reveals a two‐step pathway in the frustrated Lewis pair reaction, Chem.–A Europ. J., 21 17708-17720.
25 Li C., Requist R., Gross E. K. U. (2018) Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF. J. chem. phys., 148 (8) 084110.
26 Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 3098-3100.
27 Delchev V., Nenkova, M. V. (2008) Theoretical Modeling of the Ground State Intermolecular Proton Transfer in Cytosine: DFT Level Study, Acta. Chim. Slov., 55 132-137.
28 Blase X., Duchemin I., Jacquemin D. (2018) The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges, Chem. Soc. Rev., 47 (3) 1022-1043.
29 Khan I. M., Alam K., Alam M. J. (2020) Exploring charge transfer dynamics and photocatalytic behavior of designed donor-acceptor complex: characterization, spectrophotometric and theoretical studies (DFT/TD-DFT), J. Mol. Liquid, 310 113213.